Advertisement

Ionics

, Volume 9, Issue 1–2, pp 28–35 | Cite as

Structure-conductivity relations in ion conducting glasses

  • J. Swenson
  • St. Adams
Article

Abstract

The bond valence method has been applied to reverse Monte Carlo (RMC) produced structural models of a wide range of ion conducting glasses in order to elucidate the relation between the microscopic structure and the ionic conductivity. Our approach allows us to predict the ionic conductivity of the glasses directly from the “pathway volume” of the structural models and to investigate the nature of these low-dimensional conduction pathways. The pathways are defined to be the regions in the structural models where the valence mismatch for each mobile ions remains below a given threshold value. The results for the metal-halide doped glasses show the importance of including M+ sites with a high oxide coordination for the long range mobility, responsible for the dc conductivity. Thus, there are no long range migration pathways for M+ sites in an entire halide environment. Rather, the mobile ions are generally moving between sites with a local environment of both oxygens and halide ions, in contrast to earlier proposed “cluster models” where it has been assumed that cations associated with salt clusters are responsible for the high ionic conductivity. Finally, our bond valence approach provides a direct explanation for why the conductivity is favoured by highly polarizable anions and cations, since the pathway volume is related to the softness of the M+-X bond.

Keywords

Ionic Conductivity Halide Bond Valence High Ionic Conductivity Dope Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Kincs and S.W. Martin, Phys. Rev. Lett.76, 70 (1996).CrossRefGoogle Scholar
  2. [2]
    D. Ravaine and J.L. Souquet, Physics Chem. Glasses18 (2), 27 (1977).Google Scholar
  3. [3]
    D. Ravaine and J.L. Souquet, Physics Chem. Glasses 19 (5), 115 (1978).Google Scholar
  4. [4]
    D. Ravaine, J. Non-Cryst. Solids73, 287 (1985).CrossRefGoogle Scholar
  5. [5]
    A.M. Glass and K. Nassau, J. Appl. Phys.51, 3756 (1980).CrossRefGoogle Scholar
  6. [6]
    P. Maass, A. Bunde and M.D. Ingram,Phys. Rev. Lett. 68, 3064 (1992).CrossRefGoogle Scholar
  7. [7]
    A. Bunde, M.D. Ingram, P. Maass and K.L. Ngai, J. Noncryst. Solids131–133, 1109 (1991).Google Scholar
  8. [8]
    A. Bunde, M.D. Ingram and P. Maass, J. Non-Cryst. Solids172–174, 1222 (1994).Google Scholar
  9. [9]
    T. Minami, J. Non-Cryst. Solids73, 273 (1985).CrossRefGoogle Scholar
  10. [10]
    G.N. Greaves, J. Non-Cryst. Solids71, 203 (1985).CrossRefGoogle Scholar
  11. [11]
    M. Tachez, R. Mercier, J.P Malugani and A.J. Dianoux, Solid State Ionics18–19, 372 (1986).Google Scholar
  12. [12]
    M. Tachez, R. Mercier, J.P Malugani and A.J. Dianoux, Solid State Ionics20, 93 (1986).CrossRefGoogle Scholar
  13. [13]
    J.P Malugani, M. Tachez, R. Mercier, A.J. Dianoux and P. Chieux, Solid State Ionics23, 189 (1987).CrossRefGoogle Scholar
  14. [14]
    A. Fontana, F. Rocca and M.P. Fontana, Phys. Rev. Lett.58, 503 (1987).CrossRefGoogle Scholar
  15. [15]
    A. Fontana, F. Rocca and M.P. Fontana, Phil. Mag.B 56, 251 (1987).Google Scholar
  16. [16]
    C. Rousselot, M. Tachez, J.P Malugani, R. Mercier and P. Chieux, Solid State Ionics44, 151 (1991).CrossRefGoogle Scholar
  17. [17]
    C. Rousselot, J.P Malugani, R. Mercier, M. Tachez, P. Chieux, A.J. Pappin and M.D. Ingram, Solid State Ionics78, 211 (1995).CrossRefGoogle Scholar
  18. [18]
    M.D. Ingram, Philos. Mag.B 60 (1989) 729; Materials Chem. Phys.23, 51 (1989).Google Scholar
  19. [19]
    M.D. Ingram, Phys. Chem. Glasses28, 215 (1987).Google Scholar
  20. [20]
    J. Swenson and L. Börjesson, Phys. Rev. Lett.77, 3569 (1996).CrossRefGoogle Scholar
  21. [21]
    C. Chiodelli, A. Magistris, M. Villa, and J.L. Bjorkstam, J. Non-Cryst. Solids51, 143 (1982).CrossRefGoogle Scholar
  22. [22]
    S.A. Feller, W.J. Dell and P.J. Bray, J. Non-Cryst. Solids51, 21 (1982).CrossRefGoogle Scholar
  23. [23]
    G. Carini, M. Cutroni, A. Fontana, G. Mariotto and F. Rocca, Phys. Rev.B29, 3567 (1984).Google Scholar
  24. [24]
    L. Börjesson, L.M. Torell and W.S. Howells, Phil. Mag.B59 (1989) 105.Google Scholar
  25. [25]
    L. Börjesson, L.M. Torell, U. Dahlborg and W.S. Howells, Phys. Rev.B 39, 3404 (1989).Google Scholar
  26. [26]
    J.P. Malugani, R. Mercier and M. Tachez, Solid State Ionics21, 131 (1986).CrossRefGoogle Scholar
  27. [27]
    G. Carini, M. Cutroni, M. Federico and G. Tripodo, Solid State Ionics18 & 19, 415 (1986).Google Scholar
  28. [28]
    S.W. Martin, H. J. Bischof, M. Mali, J. Roos and D. Brinkmann, Solid State Ionics18 & 19, 421 (1986).Google Scholar
  29. [29]
    M. Villa, G. Chiodelli, A. Magistris, G. Licheri, J. Chem. Phys.85, 2392 (1986).CrossRefGoogle Scholar
  30. [30]
    E.I. Kamitsos, J.A. Kapoutsis, G.D. Chryssikos, J.M. Hutchinson, A.J. Pappin, M.D. Ingram and M.D. Duffy, Phys. Chem. Glasses36, 141 (1995).Google Scholar
  31. [31]
    J. Swenson, L. Börjesson, R.L. McGreevy, and W.S. Howells, Phys. Rev.B 55, 11236 (1997).Google Scholar
  32. [32]
    J. Swenson, R.L. McGreevy, L. Börjesson and J.D. Wicks, Solid State Ionics105, 55 (1997).Google Scholar
  33. [33]
    A. Karthikeyan and K.J. Rao, J. Phys. Chem.B 101, 3105 (1997).Google Scholar
  34. [34]
    I. D. Brown, The Chemical Bond in Inorganic Chemistry — The bond valence model (Oxford University Press, 2002).Google Scholar
  35. [35]
    R.L. McGreevy, Nucl. Instrum. Methods Phys. Res., Sect.A 354, 1 (1995).Google Scholar
  36. [36]
    R. L. McGreevy, J. Phys.: Condens. Matter13, R877 (2001).Google Scholar
  37. [37]
    St. Adams and J. Swenson, Phys. Rev. Lett.84, 4144 (2000).CrossRefGoogle Scholar
  38. [38]
    St. Adams and J. Swenson, Phys. Chem. Chem. Phys.4, 3179 (2002).CrossRefGoogle Scholar
  39. [39]
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth A.H. Teller and E. Teller, J. Phys. Chem.21, 1087 (1953).Google Scholar
  40. [40]
    J. Wicks, L. Börjesson, R.L. McGreevy, W.S. Howells and G. Bushnell-Wye, Phys, Rev. Lett.74, 726 (1995).CrossRefGoogle Scholar
  41. [41]
    J. Swenson, R.L. McGreevy, L. Börjesson, J.D. Wicks and W. S. Howells, J. Phys.: Condens. Matter8, 3545 (1996).CrossRefGoogle Scholar
  42. [42]
    J. Swenson, L. Börjesson and W.S. Howells, Phys. Rev.B 57, 13514 (1998).Google Scholar
  43. [43]
    St. Adams and J. Swenson, Phys. Rev.B 63, 054201 (2000).Google Scholar
  44. [44]
    J. Swenson and St. Adams, Phys. Rev.B 64, 024204 (2001).Google Scholar
  45. [45]
    St. Adams, Acta Cryst.B 57, 278 (2001).Google Scholar

Copyright information

© IfI - Institute for Ionics 2003

Authors and Affiliations

  • J. Swenson
    • 1
  • St. Adams
    • 2
  1. 1.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.GZG, Abt. KristallographieUniversität GöttingenGöttingenGermany

Personalised recommendations