, Volume 8, Issue 3–4, pp 272–277 | Cite as

MnO2-polypyrrole conducting polymer composite electrodes for electrochemical redox supercapacitors



Redox supercapacitors using electrochemically synthesised MnO2-polypyrrole composite electrodes have been fabricated with different electrolytes, namely polymer electrolyte film (polyvinyl alcohol, PVA-H3PO4 aqueous blend), aprotic liquid electrolyte (LiClO4-propylene carbonate, PC) and polymeric gel electrolyte [poly methyl methacrylate, (PMMA)-Ethylene carbonate (EC)-Propylene carbonate (PC)-NaClO4]. The capacitors have been characterised using galvanostatic charge-discharge methods. The cell with aqueous PVA-H3PO4 shows non-capacitive behaviour owing to some reversible chemical reaction of MnO2 with water while the MnO2-polypyrrole composite is found to be a suitable electrode material for redox supercapacitors with aprotic (non-aqueous) electrolytes. The solid state supercapacitor based on MnO2-polypyrrole composite electrodes with gel electrolyte gives stable values of capacitance of 10.0–18.0 mF cm−2 for different discharge current densities.


PMMA Poly Methyl Methacrylate MnO2 Polymer Electrolyte Propylene Carbonate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technical Applications, Kluwer Academic/Plenum Publishers, 1999.Google Scholar
  2. [2]
    F.M. Delnick, D. Intersoll, X. Andriew and K. Naoi (Eds.), Electrochemical Capacitors II, Electrochem. Soc. Proc. Ser. Penington, NJ, 1997.Google Scholar
  3. [3]
    R. Kotz and M. Carlen, Electrochim. Acta45, 2483 (2000).Google Scholar
  4. [4]
    A. Nishino, J. Power Sources60, 137 (1996).Google Scholar
  5. [5]
    S.A. Hashmi, R.J. Latham, R.G. Linford and W.S. Schlindwein, J. Chem. Soc., Faraday Trans.93, 4177 (1997).CrossRefGoogle Scholar
  6. [6]
    S.A. Hashmi, R.J. Latham, R.G. Linford and W.S. Schlindwein, Ionics3, 177 (1997).CrossRefGoogle Scholar
  7. [7]
    E. Kahraman, L. Binder and K. Kordesch, J. Power Sources36, 45 (1991).Google Scholar
  8. [8]
    T. Nohama, Y. Yamamoto, I. Nakane and N. Furukawa, J. Power Sources39, 57 (1992).Google Scholar
  9. [9] (a)
    F. Shokoohi, J.M. Tarascon and B.J. Wilkens, Appl. Phys. Lett.59, 1260 (1991).CrossRefGoogle Scholar
  10. [9] (b)
    J.M. Tarascon and D. Guyomard, J. Electrochem. Soc.138, 2864 (1991).Google Scholar
  11. [10]
    S. Kuwabata, A. Kishimoto, T. Tanaka and H. Yoneyama, J. Electrochem. Soc.141, 11 (1994).Google Scholar
  12. [11]
    P. Novak, K. Muller, K.S. Santhanam and O. Haas, Chem. Rev.97, 207 (1997).CrossRefGoogle Scholar
  13. [12]
    A. Rudge, J. Davey, I. Raistrick and S. Gottesfeld, J. Power Sources47, 89 (1994).Google Scholar
  14. [13]
    C. Arbizzani, M. Mastragostino and L. Menegheta, Electrochim. Acta,41, 21 (1994).Google Scholar
  15. [14]
    K. Naoi, Y. Oura and H. Tsujimoto (Eds.), Proc. Symp. Electrochem. Capacitors, The Electrochem. Soc. Proc., Volume 95-29, 1997, pp. 162.Google Scholar
  16. [15]
    K. Naoi, Extended Abstracts, International Conference on Applications of Conducting Polymers: Batteries, Electrochromics, Super-capacitors and Other Devices, Hotel Villa Pamphili, Rome, Italy, April, 13–16, 1997, pp. 98.Google Scholar
  17. [16]
    S. Petty-Weeks and A.J. Polak, Sensors and Actuators11, 377 (1987).CrossRefGoogle Scholar
  18. [17]
    S.A. Hashmi, R.J. Latham, R.G. Linford and W.S. Schlindwein, Polymer International47, 28 (1998).CrossRefGoogle Scholar
  19. [18]
    A. Kozawa and J.F. Yeager, J. Electrochem. Soc.111, 954 (1965).Google Scholar

Copyright information

© IfI - Institute for Ionics 2002

Authors and Affiliations

  1. 1.Department of PhysicsNorth Eastern Regional Institute of Science and TechnologyArunachal PradeshIndia

Personalised recommendations