, Volume 8, Issue 3–4, pp 272–277 | Cite as

MnO2-polypyrrole conducting polymer composite electrodes for electrochemical redox supercapacitors



Redox supercapacitors using electrochemically synthesised MnO2-polypyrrole composite electrodes have been fabricated with different electrolytes, namely polymer electrolyte film (polyvinyl alcohol, PVA-H3PO4 aqueous blend), aprotic liquid electrolyte (LiClO4-propylene carbonate, PC) and polymeric gel electrolyte [poly methyl methacrylate, (PMMA)-Ethylene carbonate (EC)-Propylene carbonate (PC)-NaClO4]. The capacitors have been characterised using galvanostatic charge-discharge methods. The cell with aqueous PVA-H3PO4 shows non-capacitive behaviour owing to some reversible chemical reaction of MnO2 with water while the MnO2-polypyrrole composite is found to be a suitable electrode material for redox supercapacitors with aprotic (non-aqueous) electrolytes. The solid state supercapacitor based on MnO2-polypyrrole composite electrodes with gel electrolyte gives stable values of capacitance of 10.0–18.0 mF cm−2 for different discharge current densities.


PMMA Poly Methyl Methacrylate MnO2 Polymer Electrolyte Propylene Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technical Applications, Kluwer Academic/Plenum Publishers, 1999.Google Scholar
  2. [2]
    F.M. Delnick, D. Intersoll, X. Andriew and K. Naoi (Eds.), Electrochemical Capacitors II, Electrochem. Soc. Proc. Ser. Penington, NJ, 1997.Google Scholar
  3. [3]
    R. Kotz and M. Carlen, Electrochim. Acta45, 2483 (2000).Google Scholar
  4. [4]
    A. Nishino, J. Power Sources60, 137 (1996).Google Scholar
  5. [5]
    S.A. Hashmi, R.J. Latham, R.G. Linford and W.S. Schlindwein, J. Chem. Soc., Faraday Trans.93, 4177 (1997).CrossRefGoogle Scholar
  6. [6]
    S.A. Hashmi, R.J. Latham, R.G. Linford and W.S. Schlindwein, Ionics3, 177 (1997).CrossRefGoogle Scholar
  7. [7]
    E. Kahraman, L. Binder and K. Kordesch, J. Power Sources36, 45 (1991).Google Scholar
  8. [8]
    T. Nohama, Y. Yamamoto, I. Nakane and N. Furukawa, J. Power Sources39, 57 (1992).Google Scholar
  9. [9] (a)
    F. Shokoohi, J.M. Tarascon and B.J. Wilkens, Appl. Phys. Lett.59, 1260 (1991).CrossRefGoogle Scholar
  10. [9] (b)
    J.M. Tarascon and D. Guyomard, J. Electrochem. Soc.138, 2864 (1991).Google Scholar
  11. [10]
    S. Kuwabata, A. Kishimoto, T. Tanaka and H. Yoneyama, J. Electrochem. Soc.141, 11 (1994).Google Scholar
  12. [11]
    P. Novak, K. Muller, K.S. Santhanam and O. Haas, Chem. Rev.97, 207 (1997).CrossRefGoogle Scholar
  13. [12]
    A. Rudge, J. Davey, I. Raistrick and S. Gottesfeld, J. Power Sources47, 89 (1994).Google Scholar
  14. [13]
    C. Arbizzani, M. Mastragostino and L. Menegheta, Electrochim. Acta,41, 21 (1994).Google Scholar
  15. [14]
    K. Naoi, Y. Oura and H. Tsujimoto (Eds.), Proc. Symp. Electrochem. Capacitors, The Electrochem. Soc. Proc., Volume 95-29, 1997, pp. 162.Google Scholar
  16. [15]
    K. Naoi, Extended Abstracts, International Conference on Applications of Conducting Polymers: Batteries, Electrochromics, Super-capacitors and Other Devices, Hotel Villa Pamphili, Rome, Italy, April, 13–16, 1997, pp. 98.Google Scholar
  17. [16]
    S. Petty-Weeks and A.J. Polak, Sensors and Actuators11, 377 (1987).CrossRefGoogle Scholar
  18. [17]
    S.A. Hashmi, R.J. Latham, R.G. Linford and W.S. Schlindwein, Polymer International47, 28 (1998).CrossRefGoogle Scholar
  19. [18]
    A. Kozawa and J.F. Yeager, J. Electrochem. Soc.111, 954 (1965).Google Scholar

Copyright information

© IfI - Institute for Ionics 2002

Authors and Affiliations

  1. 1.Department of PhysicsNorth Eastern Regional Institute of Science and TechnologyArunachal PradeshIndia

Personalised recommendations