, Volume 2, Issue 3–4, pp 282–288 | Cite as

Non-Faradaic electrochemical modification of the catalytic activity of Pt using a CaZr0.9In0.1O3-α proton conductor

  • M. Makri
  • A. Buekenhoudt
  • J. Luyten
  • C. G. Vayenas


The effect of non-Faradaic electrochemical modification of catalytic activity (NEMCA) was investigated for the case of C2H4 oxidation on a Pt polycrystalline catalyst film also acting as a working electrode in a galvanic cell of the type:
$$C_2 H_4 ,O_2 ,CO_2 ,H_2 O,Pt|CaZr_{0.9} In_{0.1} O_{3 - \alpha } |Au,C_2 H_4 , O_2 ,CO_2 ,H_2 O$$

In addition to proton conduction, CaZr0.9In0.1O3-α is known to exhibit oxygen and hole conduction. Proton conduction predominates over the temperature range, 380 to 460 °C, of the present investigation.

It was found that negative current application, i.e. proton supply to the Pt catalyst film causes up to 500% reversible enhancement to the rate of C2H4 oxidation. The catalytic rate increase is up to 20,000 higher than the rate, -I/F, of proton supply to the catalyst. The observed phenomena are discussed within the framework of previous electrochemical promotion (NEMCA) studies.


Oxidation Oxygen Analytical Chemistry Catalytic Activity C2H4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    C.G. Vayenas, S. Bebelis and S. Neophytides, J. Phys. Chem.92, 5083 (1988).CrossRefGoogle Scholar
  2. [2]
    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London)343, 625 (1990).CrossRefGoogle Scholar
  3. [3]
    I.V. Yentekakis, G. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146, 292 (1994).CrossRefGoogle Scholar
  4. [4]
    C.G. Vayenas, S. Bebelis, S., Yentekakis I.V. Yentekakis and H.-G. Lintz, Catal. Today11, 303 (1992).CrossRefGoogle Scholar
  5. [5]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S.G. Neophytides, in “Modern Aspects of Electrochemistry” (J.O'M. Bockris, B.E. Conway and R.E. White, Eds.) Vol. 27, pp. 57–202, Plenum, New York, 1995.Google Scholar
  6. [6]
    I. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).CrossRefGoogle Scholar
  7. [7]
    C. Pliangos, I.V. Yentekakis, S. Ladas and C.G. Vayenas, J. Catal.159, 189 (1996).CrossRefGoogle Scholar
  8. [8]
    S.G. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature (London)370, 45 (1994).CrossRefGoogle Scholar
  9. [9]
    T.I. Politova, V.A. Sobyanin and V.D. Belyaev, React. Kinet. Catal. Lett. 41, 321 (1990).CrossRefGoogle Scholar
  10. [10]
    D. Tsiplakides, S.G. Neophytides, O. Enea, M.M. Jaksic and C.G. Vayenas, J. Electrochem. Soc., submitted (1996).Google Scholar
  11. [11]
    A. Buekenhoudt, W. Engelen, J. Vangruderbeek, J. Luyten and F. De Schutter, Ionics1, 384 (1995).CrossRefGoogle Scholar
  12. [12]
    N. Kurita, N. Fukatsu, K. Ito and T. Ohashi, J. Electrochem. Soc.142(5), 1552 (1995).Google Scholar
  13. [13]
    C. Karavasilis, S. Bebelis and C.G. Vayenas, J. Catal.160, 205 (1996).Google Scholar
  14. [14]
    C. Pliangos, I.V. Yentekakis, X.E. Verykios and C.G. Vayenas, J. Catal.154, 124 (1995).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1996

Authors and Affiliations

  • M. Makri
    • 1
  • A. Buekenhoudt
    • 2
  • J. Luyten
    • 2
  • C. G. Vayenas
    • 1
  1. 1.Dept. of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Materials and Energy Department Boeretang 200VitoMolBelgium

Personalised recommendations