Ionics

, Volume 2, Issue 3–4, pp 248–253 | Cite as

Atomic resolution scanning tunneling microscopy imaging of Pt electrodes interfaced with β″-Al2O3

  • M. Makri
  • C. G. Vayenas
  • S. Bebelis
  • K. H. Besocke
  • C. Cavalca
Article

Abstract

Solid electrolytes can be used as active catalyst supports to induce significant and reversible catalytic activity and selectivity enhancement via the effect of Non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA effect) or Electrochemical Promotion which has been recently reported for over fourty catalytic reactions.

Atomically resolved Scanning Tunneling Microscopy was used to image the reversible electrochemically controlled dosing (backspillover) of sodium on Pt(111) interfaced to β″-Al2O3 at atmospheric pressure, which has been proposed as the cause of the NEMCA effect in the case of Na+ conductors.

It was found that electrical current application between the Pt(111) monocrystal and a counter electrode also in contact with the β″-Al2O3 Na+-conducting solid electrolyte causes reversible migration (backspillover and spillover) of sodium which forms a (12×12) hexagonal structure on the Pt(111) surface.

In addition to explaining the phenomenon of Electrochemical Promotion in Heterogeneous Catalysis when using Na-β″-Al2O3 solid electrolyte these observations provide the first STM confirmation that:
  1. (i)

    spillover-backspillover phenomena can take place over enormous (~mm) atomic distances, and

     
  2. (ii)

    promoters can form ordered structures on catalyst surfaces under ambient conditions relevant to industrial practice.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References and Notes

  1. [1]
    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London)343, 625 (1990).CrossRefGoogle Scholar
  2. [2]
    I.V. Yentekakis, G. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146, 292 (1994).CrossRefGoogle Scholar
  3. [3]
    S. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature (London)370, 45 (1994).CrossRefGoogle Scholar
  4. [4]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today11, 303 (1992) and references therein.CrossRefGoogle Scholar
  5. [5]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S. Neophytides “The Electrochemical Activation of Catalytic Reactions” in “Modern Aspects of Electrochemistry”, J.O'.M. Bockris, B.E. Conway and R.E. White, Eds., Vol.29, pp. 57–202, Plenum Press, New York (1995) and references therein.Google Scholar
  6. [6]
    M. Makri, A. Buekenhoudt, J. Luyten and C.G. Vayenas, Ionics2, 000 (1996).Google Scholar
  7. [7]
    Pritchard, J., Nature (London)343, 592 (1990).CrossRefGoogle Scholar
  8. [8]
    B. Grzybowska-Swierkosz and J. Haber in “Annual Reports on the Progress of Chemistry”, Vol. 91, pp. 395–439, The Royal Society of Chemistry, Cambridge (1994).Google Scholar
  9. [9]
    J.O.'M. Bockris and Z. Minevski, Electrochimica Acta39, 1471 (1994)CrossRefGoogle Scholar
  10. [10]
    C. Pliangos, I.V. Yentekakis, X.E. Verykios and C.G. Vayenas, J. Catalysis154, 124 (1995).CrossRefGoogle Scholar
  11. [11]
    S. Ladas, S. Bebelis and C.G. Vayenas, Surface Science251/252, 1062 (1991).CrossRefGoogle Scholar
  12. [12]
    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).CrossRefGoogle Scholar
  13. [13]
    I.R. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).CrossRefGoogle Scholar
  14. [14]
    W. Zipprich, H.-D. Wiemhöfer, U. Vöhrer and W. Göpel, Ber. Bunsengesel. Phys. Chem.99, 1406 (1995).Google Scholar
  15. [15]
    D.I. Kondarides, G.N. Papatheodorou, C.G. Vayenas and X.E. Verykios, Ber. Bunsengesel. Phys. Chem.97, 709 (1993).Google Scholar
  16. [16]
    S. Neophytides and C.G. Vayenas, J. Phys. Chem.99, 17063 (1995).CrossRefGoogle Scholar
  17. [17]
    C. Cavalca, G. Larsen, C.G. Vayenas and G.L. Haller, J. Phys. Chem.97, 6115 (1993).CrossRefGoogle Scholar
  18. [18]
    G. Pacchioni, F. Illas, S. Neophytides and C.G. Vayenas, J. Phys. Chem.100, 16653 (1996).CrossRefGoogle Scholar
  19. [19]
    G. Binnig and H. Rohrer, Surface Sci.126, 236 (1983).CrossRefGoogle Scholar
  20. [20]
    C.J. Chen “Introduction to Scanning Tunneling Microscopy” Oxford University Press (1993) and references therein.Google Scholar
  21. [21]
    J.V. Barth, R.J. Behm and G. Ertl, Surface Sci.341, 62 (1995).CrossRefGoogle Scholar
  22. [22]
    B.J. McIntyre, M.B. Salmeron and G.A. Somorjai, Catal. Lett.14, 263 (1992)CrossRefGoogle Scholar
  23. [23]
    A.J. Arvia and R.C. Salvarezza, Electrochim. Acta11/12, 1481 (1994).Google Scholar
  24. [24]
    R.J. Nichols, O.M. Magnussen, J. Hotlus, T. Twomey, R.J. Behm and D.M. Kolb, J. Electroanal. Chem.290, 21 (1990).CrossRefGoogle Scholar
  25. [25]
    R. Sonnenfeld, J. Schneir and P.K. Hansma in Modern Aspects of Electrochemistry, R.E. White and J.O'. M. Bockris, Eds. Vol. 21, pp. 1–28, Plenum Press, New York (1990).Google Scholar
  26. [26]
    B. Delmon in “New Aspects of Spillover Effect in Catalysis” T. Inui, K. Fujimoto, T. Uchijima, M. Masai Eds., pp. 1–9 Elsevier, Amsterdam (1993); S.J. Teichner, ibid pp. 27–45.Google Scholar
  27. [27]
    K.H. Besocke, Surface Sci.181, 145 (1987).CrossRefGoogle Scholar
  28. [28]
    K.J. Uram, L. Ng and J.T. Yates, Jr. Surf. Sci.177, 253 (1986).Google Scholar
  29. [29]
    C.G. Vayenas, S. Bebelis and M. Despotopoulou, J. Catalysis128, 415 (1991).CrossRefGoogle Scholar
  30. [30]
    M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke and C. Cavalca, Surf. Sci.000, 000 (1996).Google Scholar

Copyright information

© IfI - Institute for Ionics 1996

Authors and Affiliations

  • M. Makri
    • 1
  • C. G. Vayenas
    • 1
  • S. Bebelis
    • 1
  • K. H. Besocke
    • 2
  • C. Cavalca
    • 3
  1. 1.Dept. of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Besocke Delta PhiJülichGermany
  3. 3.Dept. of Chemical EngineeringYale UniversityNew HavenU.S.A.

Personalised recommendations