Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Atomic resolution scanning tunneling microscopy imaging of Pt electrodes interfaced with β″-Al2O3

  • 38 Accesses

  • 6 Citations


Solid electrolytes can be used as active catalyst supports to induce significant and reversible catalytic activity and selectivity enhancement via the effect of Non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA effect) or Electrochemical Promotion which has been recently reported for over fourty catalytic reactions.

Atomically resolved Scanning Tunneling Microscopy was used to image the reversible electrochemically controlled dosing (backspillover) of sodium on Pt(111) interfaced to β″-Al2O3 at atmospheric pressure, which has been proposed as the cause of the NEMCA effect in the case of Na+ conductors.

It was found that electrical current application between the Pt(111) monocrystal and a counter electrode also in contact with the β″-Al2O3 Na+-conducting solid electrolyte causes reversible migration (backspillover and spillover) of sodium which forms a (12×12) hexagonal structure on the Pt(111) surface.

In addition to explaining the phenomenon of Electrochemical Promotion in Heterogeneous Catalysis when using Na-β″-Al2O3 solid electrolyte these observations provide the first STM confirmation that:

  1. (i)

    spillover-backspillover phenomena can take place over enormous (~mm) atomic distances, and

  2. (ii)

    promoters can form ordered structures on catalyst surfaces under ambient conditions relevant to industrial practice.

This is a preview of subscription content, log in to check access.

7. References and Notes

  1. [1]

    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London)343, 625 (1990).

  2. [2]

    I.V. Yentekakis, G. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146, 292 (1994).

  3. [3]

    S. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature (London)370, 45 (1994).

  4. [4]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today11, 303 (1992) and references therein.

  5. [5]

    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S. Neophytides “The Electrochemical Activation of Catalytic Reactions” in “Modern Aspects of Electrochemistry”, J.O'.M. Bockris, B.E. Conway and R.E. White, Eds., Vol.29, pp. 57–202, Plenum Press, New York (1995) and references therein.

  6. [6]

    M. Makri, A. Buekenhoudt, J. Luyten and C.G. Vayenas, Ionics2, 000 (1996).

  7. [7]

    Pritchard, J., Nature (London)343, 592 (1990).

  8. [8]

    B. Grzybowska-Swierkosz and J. Haber in “Annual Reports on the Progress of Chemistry”, Vol. 91, pp. 395–439, The Royal Society of Chemistry, Cambridge (1994).

  9. [9]

    J.O.'M. Bockris and Z. Minevski, Electrochimica Acta39, 1471 (1994)

  10. [10]

    C. Pliangos, I.V. Yentekakis, X.E. Verykios and C.G. Vayenas, J. Catalysis154, 124 (1995).

  11. [11]

    S. Ladas, S. Bebelis and C.G. Vayenas, Surface Science251/252, 1062 (1991).

  12. [12]

    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).

  13. [13]

    I.R. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).

  14. [14]

    W. Zipprich, H.-D. Wiemhöfer, U. Vöhrer and W. Göpel, Ber. Bunsengesel. Phys. Chem.99, 1406 (1995).

  15. [15]

    D.I. Kondarides, G.N. Papatheodorou, C.G. Vayenas and X.E. Verykios, Ber. Bunsengesel. Phys. Chem.97, 709 (1993).

  16. [16]

    S. Neophytides and C.G. Vayenas, J. Phys. Chem.99, 17063 (1995).

  17. [17]

    C. Cavalca, G. Larsen, C.G. Vayenas and G.L. Haller, J. Phys. Chem.97, 6115 (1993).

  18. [18]

    G. Pacchioni, F. Illas, S. Neophytides and C.G. Vayenas, J. Phys. Chem.100, 16653 (1996).

  19. [19]

    G. Binnig and H. Rohrer, Surface Sci.126, 236 (1983).

  20. [20]

    C.J. Chen “Introduction to Scanning Tunneling Microscopy” Oxford University Press (1993) and references therein.

  21. [21]

    J.V. Barth, R.J. Behm and G. Ertl, Surface Sci.341, 62 (1995).

  22. [22]

    B.J. McIntyre, M.B. Salmeron and G.A. Somorjai, Catal. Lett.14, 263 (1992)

  23. [23]

    A.J. Arvia and R.C. Salvarezza, Electrochim. Acta11/12, 1481 (1994).

  24. [24]

    R.J. Nichols, O.M. Magnussen, J. Hotlus, T. Twomey, R.J. Behm and D.M. Kolb, J. Electroanal. Chem.290, 21 (1990).

  25. [25]

    R. Sonnenfeld, J. Schneir and P.K. Hansma in Modern Aspects of Electrochemistry, R.E. White and J.O'. M. Bockris, Eds. Vol. 21, pp. 1–28, Plenum Press, New York (1990).

  26. [26]

    B. Delmon in “New Aspects of Spillover Effect in Catalysis” T. Inui, K. Fujimoto, T. Uchijima, M. Masai Eds., pp. 1–9 Elsevier, Amsterdam (1993); S.J. Teichner, ibid pp. 27–45.

  27. [27]

    K.H. Besocke, Surface Sci.181, 145 (1987).

  28. [28]

    K.J. Uram, L. Ng and J.T. Yates, Jr. Surf. Sci.177, 253 (1986).

  29. [29]

    C.G. Vayenas, S. Bebelis and M. Despotopoulou, J. Catalysis128, 415 (1991).

  30. [30]

    M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke and C. Cavalca, Surf. Sci.000, 000 (1996).

Download references

Author information

Correspondence to C. G. Vayenas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Makri, M., Vayenas, C.G., Bebelis, S. et al. Atomic resolution scanning tunneling microscopy imaging of Pt electrodes interfaced with β″-Al2O3 . Ionics 2, 248–253 (1996). https://doi.org/10.1007/BF02376030

Download citation


  • Al2O3
  • Catalytic Activity
  • Scan Tunneling Microscopy
  • Solid Electrolyte
  • Heterogeneous Catalysis