, Volume 2, Issue 3–4, pp 179–183 | Cite as

Preparation, proton transport properties and use in gas sensors of thin films of zirconium phosphate with γ-layered structure

  • G. Alberti
  • M. Casciola
  • L. Massinelli
  • R. Palombari


Pellicular γ-zirconium phosphate (γ-ZP(p)), i.e. sheets made up entirely of oriented lamellae of Zr(PO4)(H2PO4)·2H2O (γ-ZP), have been obtained by filtering colloidal dispersions of exfoliated γ-ZP in water/acetone. The ac-conductivity of γ-ZP(p) and γ-ZP was measured in the temperature range 20/–20°C on samples previously conditioned at relative humidities between 90 and 5%. In both cases, the conductivity dependence on material hydration indicates the presence of a non-negligible bulk transport at low relative humidities. For each relative humidity the conductivity data have been parameterised on the basis of the Arrhenius equation. Activation energy and pre-exponential factor values suggest the presence of the same conduction mechanism in both materials. The conductivity of γ-ZP(p) measured by applying the electric field parallel to the sheets ranges from 3·10−4 to 1·10−5 S cm−1 for relative humidity decreasing from 90 to 11%, being an order of magnitude higher than that of γ-ZP. Since the pellicular and microcrystalline material have very similar surface areas (11–12 m2/g), the higher conductivity of γ-ZP(p) is mainly due to the preferred particle orientation parallel to the electric field.


Relative Humidity Arrhenius Equation Colloidal Dispersion Proton Transport Field Parallel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    A. Clearfield and G.D. Smith, Inorg. Chem.8, 431 (1969).CrossRefGoogle Scholar
  2. [2]
    A. Christensen, E. Krogh Andersen, I.G. Krogh Andersen, G. Alberti, N. Nielsen, M. Lehmann, Acta Chem. Scan.44, 865 (1990).Google Scholar
  3. [3]
    D.M. Poojary, B. Spheizer and A. Clearfield, J. Chem. Soc. Dalton Trans. 1995, 111.Google Scholar
  4. [4]
    G. Alberti, M. Casciola, U. Costantino and R. Vivani, Adv. Mater.8, 291 (1996).CrossRefGoogle Scholar
  5. [5]
    G. Alberti, M. Casciola, U. Costantino, A. Peraio and E. Montoneri, Solid State Ionics50, 315 (1992).CrossRefGoogle Scholar
  6. [6]
    G. Alberti, M. Casciola, R. Palombari and A. Peraio, Solid State Ionics58, 339 (1992).CrossRefGoogle Scholar
  7. [7]
    A. Clearfield, R.H. Blessing and J.A. Stynes, J. Inorg. Nucl. Chem.30, 2249 (1968).Google Scholar
  8. [8]
    G. Alberti, U. Costantino, C. Dionigi, S. Murcia Mascaròs and R. Vivani, Supramolecular Chem.6, 29 (1995).Google Scholar
  9. [9]
    G. Alberti, L. Boccali, M. Casciola, L. Massinelli and E. Montoneri, Solid State Ionics84, 97 (1996).CrossRefGoogle Scholar
  10. [10]
    G. Alberti, C. Dionigi, E. Giontella, S. Murcia Mascaros and R. Vivani, submitted to J. Colloid and Interface Science.Google Scholar
  11. [11]
    G. Alberti, F. Cherubini and R. Palombari, Sensors and Actuators,B24–25, 270 (1995).Google Scholar
  12. [12]
    G. Alberti, M. Bracardi and M. Casciola, Solid State Ionics7, 243 (1982).CrossRefGoogle Scholar
  13. [13]
    G. Alberti, M.G. Bernasconi and M. Casciola, Reactive Polymers11, 245 (1989).CrossRefGoogle Scholar
  14. [14]
    M. Casciola and D. Bianchi, Solid State Ionics17, 287 (1985).CrossRefGoogle Scholar
  15. [15]
    M. Casciola and U. Costantino,Solid State Ionics 20, 69 (1986).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1996

Authors and Affiliations

  • G. Alberti
    • 1
  • M. Casciola
    • 1
  • L. Massinelli
    • 1
  • R. Palombari
    • 1
  1. 1.Department of ChemistryUniversity of PerugiaPerugiaItaly

Personalised recommendations