Advertisement

Ionics

, Volume 9, Issue 3–4, pp 274–281 | Cite as

Structural and ionic conductivity studies of solid polymer electrolytes based on poly (vinylchloride) and poly (methylmethacrylate) blends

  • T. Uma
  • T. Mahalingam
  • S. Rajendran
  • Ulrich Stimming
Article

Abstract

Thin film of poly (vinylchloride) and poly (methylmethacrylate) blend polymer electrolytes plasticized with a combination of DBP and Li2SO4 salts have been prepared by solution casting technique. The prepared films were subjected to a.c. impedance measurements as a function of temperature ranging from 304–373 K. The maximum conductivity at 304 K was found to be 1.24 × 10−8 S·cm−1 for PVC-PMMA-Li2SO4-DBP (7.5-17.5-5-70 mole-%). Temperature dependence studies on the ionic conductivity in the PVC-PMMA-Li2SO4-DBP system suggest that the ion conduction follows the Williams-Landel-Ferry (WLF) mechanism, which is further confirmed by Vogel-Tamman-Fulcher (VTF) plots. XRD, FTIR, SEM and thermal studies revealed complex formation in.

Keywords

Thin Film Electronic Material Complex Formation Ionic Conductivity Polymer Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    F.M. Gray, Solid Polymer electrolytes: Fundamentals and Technological Applications, VCH, New York, 1991.Google Scholar
  2. [2]
    B. Scrosati (Ed.), in: Application of Electroactive Polymers, Chapman and Hall, New York, 1993.Google Scholar
  3. [3]
    P.G. Bruce (Ed.), in: Solid State Electrochemistry, Cambridge university Press, 1995.Google Scholar
  4. [4]
    P.V. Wright, Br. Polym. J.7, 319 (1975).Google Scholar
  5. [5]
    E. Tsuchida, H. Ohno and K. Tsunemi, Electrochim. Acta.28, 591 (1983).CrossRefGoogle Scholar
  6. [6]
    D. Peramunage, D.M. Pasquariello and K.M. Abraham, J. Electrochem.Soc.142, 1789 (1995).Google Scholar
  7. [7]
    O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot and C. Truche, Solid State Ionics66, 97 (1993).Google Scholar
  8. [8]
    M. Armand and K.M. Abraham, J. Electrochem. Soc.140, L96 (1993).Google Scholar
  9. [9]
    H.S. Lee, X.Q. Yang and J. McBreen, J. Electrochem. Soc.141, 886 (1994).Google Scholar
  10. [10]
    H.J. Rhoo, H.T. Kim, J.M. Park and T.S. Hwang, Electrochim. Acta42, 1571 (1997).CrossRefGoogle Scholar
  11. [11]
    A. Manuel Stephan, N.G. Renganathan, S. Pitchumani, R. Thirunakaran and N. Muniyandi, J Power Sources89, 80 (2000).Google Scholar
  12. [12]
    B. Heed, A. Lunden and K. Schroeder, Electrochim. Acta22, 705 (1977).CrossRefGoogle Scholar
  13. [13]
    A.D. Robertson, A.R. West and A.G. Ritchie, Solid State Ionics104, 1 (1997).CrossRefGoogle Scholar
  14. [14]
    S. Rajendran and T. Uma, J. Power Sources87, 282 (2000).Google Scholar
  15. [15]
    D.L. Tabb and J.L. Koenig, Macromolecules8, 929 (1975).CrossRefGoogle Scholar
  16. [16]
    D.N. Kendall, R.R. Hampton, Y.H. Hausdoeff and F. Pristera, Appl. Spectroscopy17, 179 (1953).Google Scholar
  17. [17]
    M. Deepa, N. Sharma, P. Varsheney, S.A. Agnihotry and R. Chandra, Ionics6, 408 (2000).CrossRefGoogle Scholar
  18. [18]
    R.G. White, in: Handbook of Industrial Infrared Analysis, Plenum Press, New York, 1964, p. 192.Google Scholar
  19. [19]
    C.N.R. Roa, in: Chemical Applications of Infrared Spectroscopy, Academic Press, New York, 1963, p. 136.Google Scholar
  20. [20]
    Idem., in: Chemical Applications of Infrared Spectroscopy, Academic Press, New York, 1963, p. 189.Google Scholar
  21. [21]
    F.A. Miller and C.H. Wilkins, Anal. Chem.24, 1253 (1952).Google Scholar
  22. [22]
    D. Li and J. Brisson, Polymer39, 793 (1998).Google Scholar
  23. [23]
    M.G. Mclin and C.A. Angell, J. Phys. Chem.95(23), 9464 (1991).CrossRefGoogle Scholar
  24. [24]
    D.L. Vien, N.B. Colthup, W.G. Fateley and J.G. Grasselli, in: Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Inc. New York, 1991, p. 85.Google Scholar
  25. [25]
    T. Shodai, Boone B. Owens, H. Ohtsuka and J. Yamaki, J. Electrochem. Soc.141, 2978 (1994).Google Scholar
  26. [26]
    M.B. Armand, J.M. Chabagno, M.J. Duclot, in: Fast-ion transport in solids, (P. Vashishta, J.N. Mundy, G. Shenoy, Eds.), North-Holland, Amsterdam, 1979, p. 131.Google Scholar
  27. [27]
    T. Miyamoto and K. Shibayama, J. Appl. Phys.44, 5372 (1973).CrossRefGoogle Scholar
  28. [28]
    M. Ratner and D.F. Shriver, Chem.Rev.88, 109 (1988).CrossRefGoogle Scholar
  29. [29]
    M.L. Williams, R.F. Landell and J.D. Ferry, J. Am. Chem. Soc.77, 3701 (1955).Google Scholar
  30. [30]
    Y. Okamoto, T.F. Ych, H.S. Lee and T.A. Skotheimk, J. Polym.Sci. Part A, Polym. Chem.31, 2573 (1993).CrossRefGoogle Scholar
  31. [31]
    V.G. Tamman and H. Hesse, Z. Anorg. Allg.Chem.19, 245 (1926).Google Scholar

Copyright information

© IfI - Institute for Ionics 2003

Authors and Affiliations

  • T. Uma
    • 1
  • T. Mahalingam
    • 2
  • S. Rajendran
    • 3
  • Ulrich Stimming
    • 1
  1. 1.Physik Department E19Technische Universität MünchenGermany
  2. 2.Institute of Materials EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
  3. 3.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations