, Volume 9, Issue 3–4, pp 195–201 | Cite as

Role of the microstructure on the transport properties of Y-doped zirconia and Gd-doped ceria

  • G. Petot-Ervas
  • C. Petot
  • J. M. Raulot
  • J. Kusinski
  • I. Sproule
  • M. Graham


Transmission electron microscopy characterizations and XPS analyses have allowed us to show the influence of the microstructure and nanochemistry on the transport properties of Y2O3-(9 mol%)-stabilized zirconia (YSZ) and Gd2O3 (10 mol%)-doped ceria (GDC). The grain boundary electrical conductivity (σgb) and oxygen diffusion coefficient (Do) of conventional YSZ ceramics increase with the grain size, while an opposite behavior was found for GDC samples. This difference was attributed to glassy precipitates present at YSZ grain boundaries. Furthermore, it was shown that kinetic demixing processes take place during cooling, at the end of sintering. This causes important changes in the cationic species distribution at interfaces and plays an important role on the transport properties of these two materials.


Transmission Electron Microscopy Zirconia Ceria Transport Property Y2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    N.K. Minh, Zirconia — Ceramic Fuel Cells, J. Am. Cer. Soc.76(3), 563 (1993).Google Scholar
  2. [2]
    H.I. Tuller, Solid State Ionics3, 143 (2000).Google Scholar
  3. [3]
    C. Xia, M. Liu, Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing, Solid State Ionics144, 249 (2001).CrossRefGoogle Scholar
  4. [4]
    H. Yahiro, Y. Baba, K. Eguchi, H. Arai, High temperature fuel cell with ceria-yttria solid electrolyte, J. Electrochem. Soc.8, 2077 (1988).Google Scholar
  5. [5]
    A.V. Virkar, Theoretical analysis of solid oxide fuel cells with two-layer composite electrolytes: Electrolyte stability, J. Electrochem. Soc.138, 1481 (1991).Google Scholar
  6. [6]
    S.P.S. Badwal, A.E. Hughes, Modification of cell characteristics by segregated impurities, Proceedings of the second International Symposium on Solid Oxide Fuel Cells (F. Gross, P. Zegers, S.C. Singhal, O. Yamamoto, Eds.) Office for Official Publications of the European Communities, Luxembourg, 445–454 (1991).Google Scholar
  7. [7]
    S.P.S. Badwal, Grain boundary resistivity in zirconia-based materials: Effect of sintering temperatures and impurities, Solid State Ionics76, 67 (1995).CrossRefGoogle Scholar
  8. [8]
    C. Petot, M. Filal, A. Rizea, K.H. Westmacott, J.Y. Laval, C. Lacour, Microstructure and ionic conductivity of freeze-dried yttria-doped zirconia, J. Eur. Cer. Soc.18, 1419 (1998).Google Scholar
  9. [9]
    A. Rizea, D. Chirlesan, C. Petot, G. Petot-Ervas Alumina influence on the microstructure and grain boundary conductivity of yttria-doped zirconia, Solid State Ionics146, 341 (2002).CrossRefGoogle Scholar
  10. [10]
    A. Rizea, C. Petot, G. Petot-Ervas, M.J. Graham, G.I. Sproule, Kinetic demixing and grain boundary conductivity of yttria-doped zirconia, Ionics7, 72 (2001).CrossRefGoogle Scholar
  11. [11]
    M. Aoki, Y.M. Chiang, I. Kosacki, L.J. Lee, H. Tuller, Y. Liu, Solute segregation and grain boundary impedance in high-purity stabilized zirconia, J. Am. Cer. Soc.79, 1169 (1996).Google Scholar
  12. [12]
    M. Filal, C. Petot, M. Mokchah, C. Chateau, J.L. Charpentier, Ionic conductivity of yttrium-doped zirconia and the composite effect, Solid State Ionics80, 27 (1995).CrossRefGoogle Scholar
  13. [13]
    G. Petot-Ervas, C. Petot, Electrode materials, interface processes and transport properties of yttriadoped zirconia, Ionics3, 405 (1997).CrossRefGoogle Scholar
  14. [14]
    G. Petot-Ervas, C. Petot, Experimental procedure for the determination of diffusion coefficients in ionic compounds, Solid State Ionics117, 237 (1999).CrossRefGoogle Scholar
  15. [15]
    H. Sato, R. Kikuchi, Cation diffusion and conductivity in solid electrolytes, J. Chem. Phys.55(2), 677 (1971).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2003

Authors and Affiliations

  • G. Petot-Ervas
    • 1
  • C. Petot
    • 1
  • J. M. Raulot
    • 1
  • J. Kusinski
    • 2
  • I. Sproule
    • 3
  • M. Graham
    • 3
  1. 1.CNRS-URA 453, Laboratoire SPMS, Ecole Centrale Paris, Grande voie des VignesChâtenay-Malabry, CedexFrance
  2. 2.Academy of Mining and MetallurgyKrakowPoland
  3. 3.CNRCOttawaCanada

Personalised recommendations