, Volume 4, Issue 3–4, pp 161–169 | Cite as

Electrochemical promotion of Pd for the hydrogenation of C2H2

  • A. Giannikos
  • P. Petrolekas
  • C. Pliangos
  • A. Frenzel
  • C. G. Vayenas
  • H. Pütter


The effect of Non-Faradaic Electrochemical Modification of Catalytic Activity, orin-situ controlled promotion, was investigated during Acetylene selective hydrogenation on Pd films deposited on β″ - Al2O3, a Na+ conductor, at temperatures from 60 to 100 °C and GHSVs from 103 to 104 h-−1, i.e., under conditions similar to those used in industrial processes. It was found that both acetylene conversion and hydrogenation selectivity can be affected by means of externally applied potentials, i.e., by supplying or removing sodium ions to or from the catalyst surface. Electrochemical sodium supply to the Pd catalyst surfaċe was found to supress both the rate of acetylene hydrogenation and, to a larger extent the rate of ethylene hydrogenation to ethane. Consequently electrochemical sodium supply was found to enhance the selectivity to ethylene. Thus, β″ - Al2O3 can act as an active catalyst support causing enhanced performance of the Pd catalyst. Acetylene conversion and hydrogenation selectivity values up to 90 % and 95 %, respectively, were obtained.


Al2O3 Active Catalyst C2H2 Acetylene Industrial Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Bos, Proefschrift, Univ. Twente, 1992.Google Scholar
  2. [2]
    R. Bos, E. Hof, W. Kuper and K. R. Westerterp, Chem. Engng. Sci.48, 1959 (1993).CrossRefGoogle Scholar
  3. [3]
    W. T. McGown, C. Kemball and D. A. Whan, J. Catal.51, 173 (1978).CrossRefGoogle Scholar
  4. [4]
    J. M. Moses, A. H. Weiss, K. Matusek and L. Guczi,J. Catal. 86, 417 (1984).CrossRefGoogle Scholar
  5. [5]
    G. A. Somorjai, L. L. Kesmodel and L. H. Dubois, J. Phys. Chem.20, 2180 (1979).Google Scholar
  6. [6]
    J. Margitfalvi, L. Guczi and A. H. Weiss, J. Catal.72, 185 (1981).CrossRefGoogle Scholar
  7. [7]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today11, 303 (1992).CrossRefGoogle Scholar
  8. [8]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S.G. Neophytides, The electrochemical activation of catalytic reactions in: Modern Aspects of Electrochemistry (J.O.'M. Bockris, B.E. Conway and R.E. White, Eds.), Vol.29, pp. 57–202, Plenum, New York (1996).Google Scholar
  9. [9]
    S. Bebelis and C.G. Vayenas, J. Catal.118, 125 (1989).CrossRefGoogle Scholar
  10. [10]
    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London),343, 625 (1990).CrossRefGoogle Scholar
  11. [11]
    T.I. Politova, V.A. Sobyanin and V.D. Belyaev, React. Kinet. Catal. Lett.41, 321 (1990).CrossRefGoogle Scholar
  12. [12]
    C. Pliangos, I.V. Yentekakis, X.E. Verykios and C.G. Vayenas, J. Catal.154, 124 (1995)CrossRefGoogle Scholar
  13. [13]
    C.G. Vayenas, S. Bebelis and M. Despotopoulou, J. Catal.128, 415 (1991)CrossRefGoogle Scholar
  14. [14]
    I.V. Yentekakis, G. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146, 292 (1994).CrossRefGoogle Scholar
  15. [15]
    E. Varkaraki, J. Nicole, E. Plattner, Ch. Comninellis and C.G. Vayenas, J. Appl. Electrochem.25, 978 (1995).CrossRefGoogle Scholar
  16. [16]
    I.R. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).CrossRefGoogle Scholar
  17. [17]
    C.A. Cavalca, G. Larsen, C.G. Vayenas and G.L. Haller, J. Phys. Chem.97, 6115 (1993)CrossRefGoogle Scholar
  18. [18]
    C.G. Vayenas, S. Ladas, S. Bebelis, I.V. Yentekakis, S.G. Neophytides, Yi Jiang, Ch. Karavasilis and C. Pliangos, Electrochim. Acta39, 1849 (1994).CrossRefGoogle Scholar
  19. [19]
    Ch. Karavasilis, S. Bebelis and C.G. Vayenas, J. Catal.160, 205 (1996).Google Scholar
  20. [20]
    S.G. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature (London)370, 45 (1994).CrossRefGoogle Scholar
  21. [21]
    C. Pliangos, I.V. Yentekakis, S. Ladas and C.G. Vayenas, J. Catal.159, 189 (1996).CrossRefGoogle Scholar
  22. [22]
    P.D. Petrolekas, S. Balomenou and C.G. Vayenas, J. Electrochem. Soc., submitted.Google Scholar
  23. [23]
    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).CrossRefGoogle Scholar
  24. [24]
    J. Pritchard, Nature (London)342, 592 (1990).Google Scholar
  25. [25]
    J.O.'M. Bockris and Z.S. Minevski, Electrochim. Acta39, 1471 (1994).CrossRefGoogle Scholar
  26. [26]
    S. Ladas, S. Bebelis and C.G. Vayenas, Surf. Sci.251/252, 1062 (1991).CrossRefGoogle Scholar
  27. [27]
    C.G. Vayenas and I.V. Yentekakis, Electrochemical modification of catalytic activity, in: Handbook of Heterogeneous Catalysis (G. Ertl, H. Knötzinger, J. Weitkamp, Eds.). VCH, Weinheim, New York (1996).Google Scholar
  28. [28]
    J. Margitfalvi, L. Guczi and A. H. Weiss, React. Kinet. Catal. Lett.15, 475 (1980).Google Scholar
  29. [29]
    J. Hölzl and F.K. Schulte, in: Solid Surface Physics, pp. 1–150, Springer-Verlag, Berlin (1979).Google Scholar
  30. [30]
    J.R. Anderson and K.C. Pratt, in: Introduction to Characterization and Testing of Catalysts, Academic Press, New York (1985).Google Scholar

Copyright information

© IfI - Institute for Ionics 1998

Authors and Affiliations

  • A. Giannikos
    • 1
  • P. Petrolekas
    • 1
  • C. Pliangos
    • 1
  • A. Frenzel
    • 2
  • C. G. Vayenas
    • 1
  • H. Pütter
    • 2
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.BASF AGLudwigshafenGermany

Personalised recommendations