Skip to main content
Log in

Proton conduction in oxyacid salts at intermediate temperatures for fuel cell applications

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Materials that are proton conducting at intermediate temperatures are of prime importance for fuel cell applications. For example, by lowering the operating temperature of a solid oxide fuel cell the severe material problems encountered at high temperatures may be avoided while fast kinetics at the electrodes may still be obtained. In this article a number of proton conducting solid materials based on oxyacid salts are discussed, materials with and without structural protons, as well as composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

8. References

  1. A.J. Appleby, Energy21, 521 (1996).

    Article  CAS  Google Scholar 

  2. see J. Power Sources71 (1998) [Proceedings of the fifth Grove Fuel Cell Symposium].

  3. K. Prater, J. Power Sources51, 129 (1994).

    CAS  Google Scholar 

  4. S.P.S. Badwal and K. Foger, Ceramics International22, 257 (1996).

    Article  CAS  Google Scholar 

  5. Ph. Colomban, in: Proton conductors; Solids, membranes and gels - materials and devices, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  6. K.-D. Kreuer, Chem. Mater.8, 610 (1996).

    Article  CAS  Google Scholar 

  7. F.M. Ernsberger, J. Am. Ceramic Soc.66, 747 (1983).

    CAS  Google Scholar 

  8. A.I. Baranov, L.A. Shuvalov and N.M. Shchagina, Sov. Phys. J. Exp. Theor. Phys. Letters36, 459 (1982).

    Google Scholar 

  9. T. Norby, M. Friesel and B.-E. Mellander, Solid State Ionics77, 105 (1995).

    CAS  Google Scholar 

  10. A. Lundén, in: Solid State Ionics: New Developments, (B.V.R. Chowdari, M.A.K.L. Dissanayake and M.A. Careem, Eds.) World Scientific, Singapore, 1996, p. 245.

    Google Scholar 

  11. Thilo E., in: Advances in Inorganic Chemistry and Radiochemistry4 (H. J. Emeleus and A. G. Sharpe, Eds.) Academic Press, New York, 1962, p 1.

    Google Scholar 

  12. K.-S. Lee, J. Phys. Chem. Solids57, 333 (1996).

    CAS  Google Scholar 

  13. E. Ortiz, R.A. Vargas, B.-E. Mellander and A. Lundén, Polish J. Chem.71, 1797 (1997).

    CAS  Google Scholar 

  14. E. Ortiz, R.A. Vargas and B.-E. Mellander, J. Phys. Chem. Solids59, 305 (1998).

    CAS  Google Scholar 

  15. E. Ortiz, R.A. Vargas, G. Cuervo, B.-E. Mellander and J. Gustafson, J. Phys. Chem. Solids59, 1111 (1998).

    CAS  Google Scholar 

  16. E. Ortiz, R.A. Vargas and B.-E. Mellander, J. Chem. Phys.110, 4847 (1999).

    Article  CAS  Google Scholar 

  17. H. Iwahara, T. Esaka, H. Ushida and M. Maeda, Solid State Ionics3/4, 359 (1981).

    Article  Google Scholar 

  18. T. Norby, Solid State Ionics40/41, 857 (1990).

    Google Scholar 

  19. B. Heed, B. Zhu, B.-E. Mellander and A. Lundén, Solid State Ionics46, 121 (1991).

    Article  CAS  Google Scholar 

  20. A. Lundén, B.-E. Mellander and B. Zhu, Acta Chem. Scand.45, 981 (1991).

    Google Scholar 

  21. A. Lundén, in: Solid State Ionics: New Developments (B.V.R. Chowdari, M.A.K.L. Dissanayake and M.A. Careem, Eds.), World Scientific, Singapore, 1996, p. 23 and references therein.

    Google Scholar 

  22. B. Zhu and B.-E. Mellander, Solid State Ionics97, 535 (1997).

    CAS  Google Scholar 

  23. B.-E. Mellander and B. Zhu, Solid State Ionics61, 105 (1993).

    Article  CAS  Google Scholar 

  24. T. Norby and N. Christiansen, Solid State Ionics77, 240 (1995).

    CAS  Google Scholar 

  25. R. Kaber, L. Nilsson, N.H. Andersen and A. Lundén. J. Phys. C4, 1925 (1992).

    CAS  Google Scholar 

  26. A. Lundén and J.O. Thomas, in: High Conductivity Solid Ionic Conductors, (T. Takahashi, Ed.) World Scientific, Singapore, 1989, p. 45.

    Google Scholar 

  27. N.H. Andersen, P.W.S.K. Bandaranayke, M.A. Careem, M.A.K.L. Dissanayake, R. Kaber, A. Lundén, B.-E. Mellander, L. Nilsson, J.O. Thomas and C.N. Wijayasekera, Solid State Ionics57, 203 (1992).

    Article  CAS  Google Scholar 

  28. R. Tarneberg and B.-E. Mellander, Solid State Ionics98, 175 (1997).

    Google Scholar 

  29. R. Tarneberg, Z. Naturforsch.51a, 1157 (1996).

    Google Scholar 

  30. C.C. Liang, J. Electrochem. Soc.120, 1289 (1973).

    CAS  Google Scholar 

  31. T. Jow and J. B. Wagner Jr., J. Electrochem. Soc.126, 1969 (1979).

    Google Scholar 

  32. P. Hartwig and W. Weppner, Solid State Ionics3/4, 249 (1982).

    Google Scholar 

  33. K. Shahi and J. B. Goodenough, J. Solid State Chem.42, 107 (1982).

    Article  CAS  Google Scholar 

  34. J. Maier, J. Phys. Chem. Solids46, 309 (1985).

    CAS  Google Scholar 

  35. F.W. Poulsen, in: Transport in Composite Ionic Conductors, (F.W. Poulsen, N. Hessel Andersen, K. Clausen, S. Skaarup and O. Toft Sorensen, Eds.) Risø National Laboratory, Roskilde, 1985, p. 67.

    Google Scholar 

  36. A. Bunde, W. Dieterich and H.E. Roman, Phys. Rev. Lett.55, 5 (1985).

    CAS  Google Scholar 

  37. S.N. Reddy, A.S. Chary, K. Saibabu and T. Chiranjivi, Solid State Ionics34, 73 (1989).

    CAS  Google Scholar 

  38. L.Q. Chen, in: Materials for Solid State Batteries (B.V.R. Chowdari and S. Radhakrishna, Eds.) World Scientific, Singapore, 1986, p. 69.

    Google Scholar 

  39. C. W. Nan, Progress in Mat. Sci.37, 1 (1993).

    CAS  Google Scholar 

  40. S. Jiang and J.B. Wagner Jr., J. Phys. Chem. Solids56, 1101 (1995); 56, 1113 (1995).

    CAS  Google Scholar 

  41. N.F. Uvarov, E.F. Hariretdinov and I.V. Skobelev, Solid State Ionics86–88, 577 (1996).

    Google Scholar 

  42. A. Kumar and K. Shahi, J. Electrochem. Soc.142, 874 (1995).

    CAS  Google Scholar 

  43. B. Zhu, Z.H. Lai and B.-E. Mellander, Solid State Ionics70/71, 125 (1994).

    Google Scholar 

  44. B. Zhu and B.-E. Mellander, Solid State Ionics77, 244 (1995).

    Article  CAS  Google Scholar 

  45. B. Zhu and B.-E. Mellander, Solid State Ionics70/71, 285 (1994).

    Google Scholar 

  46. B. Zhu, B.-E. Mellander and B. Stjerna, Solid State Communications91, 709 (1994).

    Article  CAS  Google Scholar 

  47. B. Zhu, B.-E. Mellander, L. Wanyu, S. Chen, X. Xiu and D. Wang, J. Inorganic Materials (China)12, 412 (1997).

    CAS  Google Scholar 

  48. B. Nettelblad, B. Zhu and B.-E. Mellander, Phys. Rev. B55, 6232 (1997).

    Article  CAS  Google Scholar 

  49. B. Zhu and B.-E. Mellander, Ferroelectrics167, 1 (1995).

    CAS  Google Scholar 

  50. B. Zhu, X. Luo, C. Xia, I. Albinsson and B.-E. Mellander, Ionics (1998), in press.

  51. B. Zhu and B.-E. Mellander, in: Solid Oxide Fuel Cells (S.C. Singhal and H. Iwahara, Eds.), The Electrochem. Soc., Pennington, 1993, p. 156.

    Google Scholar 

  52. B. Zhu and B.-E. Mellander, J. Power Sources52, 289 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellander, B.E., Albinsson, I. Proton conduction in oxyacid salts at intermediate temperatures for fuel cell applications. Ionics 4, 415–421 (1998). https://doi.org/10.1007/BF02375886

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375886

Keywords

Navigation