Skip to main content
Log in

Ageing of solid electrolytes and electrode materials in electrochemical devices

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The ageing behavior reported in this work concerns the consequences of the matter transport processes on the cationic sublattice which occur in solid electrolytes, mixed ionic conducting compounds and semiconducting oxides subjected to a chemical potential gradient, an applied electrical field or a mechanical stress gradient. The principle of the kinetic demixing under a “generalized” thermodynamic potential gradient is reviewed. Available experimental results concerning yttria-doped zirconia and iono-covalent oxides are reported. The results are discussed in relation with the microstructure and composition evolution of the surfaces and the electrode resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

5. References

  1. J.R. Macdonald, Impedance Spectroscopy, John Willey, New York (1987)

    Google Scholar 

  2. N.Q. Minh, Ceramic fuel cells, J. Am. Cer. Soc.76, 563 (1993).

    CAS  Google Scholar 

  3. C. Wagner, Galvanic cells with solid electrolytes involving ionic and electronic conduction, 7th Meeting Int. Com. Electrochemistry, Thermodynamics and Kinetics (1957) p. 361.

  4. N.J. Dudney, R.L. Coble, H.L. Tuller, Galvanic cell measurements with stabilized zirconia and platinum probes, J. Am. Cer. Soc.64, 6721 (1981).

    Google Scholar 

  5. W. Weppner, R.A. Huggins, Electrochemical methods for determining kinetic properties of solids, Annual Review of Materials Science8, 269 (1978).

    Article  CAS  Google Scholar 

  6. S.P.S. Badwal, New electrode materials for low temperature oxygen sensors, J. Anal. Chem.146, 425 (1983).

    CAS  Google Scholar 

  7. S.P.S. Badwal, M.J. Banister, W.G. Garret, Low temperature behavior of zirconia oxygen sensors, in: Science and Technology of Zirconia, (A.H. Heuer, L.W. Hobbs, Eds.) The American Cer. Soc., Columbus, OH (1984) p. 598.

    Google Scholar 

  8. G. Petot-Ervas, A. Rizea, C. Petot, Electrode materials, interface processes and transport properties of yttria-doped zirconia, Ionics3, 405 (1998).

    Google Scholar 

  9. G. Petot-Ervas, C. Petot, Experimental procedure for the determination of diffusion coefficients in ionic compounds, Application to yttrium-doped zirconia, Sol. St. Ionics117, 27 (1999).

    CAS  Google Scholar 

  10. H. Solmon, C. Monty, M. Filal, G. Petot-Ervas, C. Petot, Ionic transport properties of yttrium-doped zirconia, Solid State Phenomena41, 103 (1995).

    CAS  Google Scholar 

  11. C. Petot, M. Filal, A. Rizea, K.H. Westmacott, J.Y. Laval, C. Lacour, Microstructure and ionic conductivity of freeze dried yttria-doped zirconia, J. Eur. Cer. Soc.18, 1419 (1998).

    CAS  Google Scholar 

  12. H. Schmalzried, W. Laqua, Multicomponent oxides in oxygen potential gradients, Oxidation of Metals15, 339 (1981).

    Article  CAS  Google Scholar 

  13. H. Schmalzried, Behavior of oxide crystals in oxygen potential gradients, Reactivity of Solids1, 117 (1986).

    Article  Google Scholar 

  14. M. Martin, H. Schmalzried, Cobaltous oxide in an oxygen potential gradient: Morphological stability of the phase boundaries, Ber. Bunsenges. Phys. Chem.89, 124 (1985).

    CAS  Google Scholar 

  15. G. Petot-Ervas, C. Petot, The influence of impurities segregation phenomena on the oxido-reduction of oxides, J. Phys. Chem. Solids51, 901 (1989).

    Google Scholar 

  16. D. Monceau, G. Petot-Ervas, C. Petot, Kinetic demixing profile calculation in oxide solid solutions under a chemical potential gradient, Sol. St. Ionics45, 231 (1991).

    CAS  Google Scholar 

  17. D. Monceau, M. Filal, M. Tebtoub, C. Petot, G. Petot-Ervas, Kinetic demixing of ceramics in an electrical field, Sol. St. Ionics73, 221 (1994).

    CAS  Google Scholar 

  18. D. Dimos, D.L. Kohlstedt, Diffusional creep and kinetic demixing in yttria-doped zirconia, J. Am. Cer. Soc.70, 531 (1987).

    CAS  Google Scholar 

  19. P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley interscience, New York (1972).

    Google Scholar 

  20. J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids, les Editions de Physique (1991).

  21. A.R. Alnatt, A.B. Lidiard, Atomic Transport in Solids, Cambridge University Press (1993).

  22. F.A. Kröger, The Chemistry of Imperfects Crystals, North Holland (1951).

  23. C. Wagner, Atom movements, American Society for metals, Cleveland (1951).

    Google Scholar 

  24. A.T. Fromhold, Theory of metal oxidation, North Holland, Amsterdam (1976).

    Google Scholar 

  25. J. Wolfenstine, D. Dimos, D.L. Kohlstedt, Decomposition of Ni2SiO4 in an oxygen potential gradient, J. Am. Cer. Soc.68, C117 (1985).

    Google Scholar 

  26. B. Ma, U. Balachandran, Phase stability of SrFeCo0.5Ox in reducing environment, Materials Research Bulletin 33,2,223 (1998).

  27. O. Teller, M. Martin, Sol, St, Ionics475, 101 (1997).

    Google Scholar 

  28. H. Solmon, C. Monty, C. Dolin, Zr, Y and O self-diffusion in yttrium-doped zirconia, Ceramic Transactions, The American Ceramic Society24, 175 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petot-Ervas, G., Petot, C. Ageing of solid electrolytes and electrode materials in electrochemical devices. Ionics 4, 336–346 (1998). https://doi.org/10.1007/BF02375875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375875

Keywords

Navigation