, Volume 2, Issue 1, pp 39–45 | Cite as

Some remarks on the ionic conductivity in NaY dehydrated zeolite

  • A. Abdoulaye
  • S. S. Soulayman
  • G. Chabanis
  • J. C. Giuntini
  • J. V. Zanchetta
  • I. Brach


On the basis of experimental measurements of the electrical conductivity of the Nafaujasite zeolites (NaY), treated under vacuum up to 673 K for 24 hours, we clearly demonstrate that the behavior of the measured conductivity σac of the dehydrated zeolite NaY, over an interval of high frequency change, may be described by a power-law function: σac=A▹s. The exponent s, in this case, should be considered as temperature and frequency dependent when the parameter A is a temperature dependent function. On the other hand, when considering the measured conductivity as a sum of two terms (σac0+σ′(▹)) resulting from the contributions of the dc and the ac components respectively, we find that one of them obeys the Arrhenius law while the other can be expressed as A▹s. Parameter s is practically frequency independent when the frequency of the applied electrical field is higher than a characteristic value ▹c A comparison with the measurements performed on NaY dehydrated at 435 K is also included.


Physical Chemistry Analytical Chemistry Electrical Conductivity Zeolite Electronic Material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    O. Vigil, J. Fundora, F. Leccabue and B.E. Watts, Phys. Stat. Sol. a141, K37 (1994).Google Scholar
  2. [2]
    G. Kelemen and G. Schon, J. Mater. Science27, 6036 (1992).Google Scholar
  3. [3]
    O. Vigil, J. Fundora, H. Villavicencieo, M. Hernandez-Velez and R. RoqueMalherbe, J. Mater. Science Lett.11, 1725 (1992).Google Scholar
  4. [4]
    O. Vigil, H. Heredia, F. Leccabue and B. E. Watts, phys. Stat. Sol. a135, K71 (1993).Google Scholar
  5. [5]
    M.D. Baker, J. Zhang and M. BcBrien, J. Phys. Chem.99, 6635 (1995).Google Scholar
  6. [6]
    D.W. Breck, Zeolite Molecular Sieves: Structure, Chemestry and Use, R.E. Krieger Publishing, Malabar, FL, 1984.Google Scholar
  7. [7]
    See for example, a special topic on new frontiers in Material Science, Science263, 1698 (1994).Google Scholar
  8. [8]
    H. Lechert and W.D. Basler, J. Phys. Chem. Sol.50, 497 (1989), P. Pissis and D. Daoukaki-Diamanti, J. Phys. Chem. Sol.54, 701 (1993).CrossRefGoogle Scholar
  9. [9]
    T. Ohgushi, Bull. Chem. Soc., Japan61, 1109 (1988).Google Scholar
  10. [10]
    A. Szasz, S. Sabet and J. Liszi, Acta Chim. Hungar.125, 37 (1988).Google Scholar
  11. [11]
    E. Krogh Andersen, I.G. Krogh Andersen, E. Skou and S. Yde Andersen, Sol. Stat. Ionics18, 1171 (1986).Google Scholar
  12. [12]
    R.C.T. Slade, H. Jinku and G.B. Hix, Sol. Stat. Ionics57, 117 (1992).Google Scholar
  13. [13]
    N.H. Mongensen and E. Skou, Sol. Stat. Ionics77, 51 (1995).Google Scholar
  14. [14]
    I.R. Beattie and A. Dyer, Trans. Farad. Soc.53, 61 (1957).CrossRefGoogle Scholar
  15. [15]
    D.N. Stamires, J. Chem. Phys.36, 3174 (1962).CrossRefGoogle Scholar
  16. [16]
    T. Ohgushi and S. Sato, J. Sol. Stat. Chem.87, 95 (1990).CrossRefGoogle Scholar
  17. [17]
    J.J. Van Dun, Kr. Dhaeze, W.J. Mortier and D.E.W. Vaughan, J. Phys. Chem. Sol.50, 469 (1989).Google Scholar
  18. [18]
    F. Di Renzi, F. Fajula, F. Figueras, M. Agnés Nicole and T. Des Courieres, Synthesis of Microporous Materials, M.L. Occeli and H.E. Robson (eds), Van Nostrand Reinhold, New-York1, 105 (1992).Google Scholar
  19. [19]
    J.C. Giuntini, J.V. Zanchetta, I. Brach and S. Diaby, Advanced Methodology, in Coals Characterized (Elsevier, Amsterdam 1990).Google Scholar
  20. [20]
    J.C. Giuntini, A. Jabobker and J.V. Zanchetta, Clay Miner.20, 347 (1985).Google Scholar
  21. [21]
    H. Jain and O. Kanert, in: Defects in Insulating Materials, O. Karnet and J.M. Specht (eds), World Scientific, Singapore1, P. 274 (1993).Google Scholar
  22. [22]
    J.C. Giuntini, J.V. Zanchetta and F. Salam, Mat. Science and EngineeringB33, 75 (1995).Google Scholar
  23. [23]
    H. Jain and W.C. Huang, J. Non-Cryst. Sol.172, 1334 (1994).Google Scholar
  24. [24]
    A. Hunt, J. Non-Cryst. Sol.160, 283 (1993).Google Scholar
  25. [25]
    Ph. Colomban and J.C. Badot, Sol, Stat. Ionics6, 55 (1993).Google Scholar
  26. [26]
    A.R. Haydar and A.K. Jonsher, J. Chem. Soc. Farad. Trans.I82, 3535 (1985).Google Scholar
  27. [27]
    J.P. Tabourier, J.C. Carru and J.W. Wacrenier, J. Chem. Phys.87, 43 (1990).Google Scholar
  28. [28]
    M. Meyer, Ph. Maass and A. Bunde, J. Non-Cryst. Sol.172, 1292 (1994).CrossRefGoogle Scholar
  29. [29]
    K. Funke, Prog. Sol. Stat. Chem.22, 111 (1993).Google Scholar
  30. [30]
    A.S. Nowick, B.S. Lim and A.V. Vaysleyb, J. Non-Cryst. Sol.172, 1243 (1994).Google Scholar
  31. [31]
    D.P. Almond and A.R. West, Sol. Stat. Ion.9, 277 (1983).Google Scholar
  32. [32]
    J.C. Dyre, J. Non-Cryst. Sol.135, 219 (1991).CrossRefGoogle Scholar
  33. [33]
    A.K. Jonscher, Dielectric relaxation in solids (Chesla Dielectric, London 1983).Google Scholar
  34. [34]
    H. Jain and J.N. Mundy, J. Non-Cryst. Sol.91, 315 (1987).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1996

Authors and Affiliations

  • A. Abdoulaye
    • 1
  • S. S. Soulayman
    • 1
  • G. Chabanis
    • 1
  • J. C. Giuntini
    • 1
  • J. V. Zanchetta
    • 1
  • I. Brach
    • 2
    • 1
  1. 1.Laboratoire de Physico-Chimie des Materiaux Solides, Equipe de Chimie Physique, URA D0407Universite de Montpellier IIMontpellier cedex 05France
  2. 2.Commission of the European CommunitiesBruxellesBelgium

Personalised recommendations