, Volume 2, Issue 1, pp 39–45 | Cite as

Some remarks on the ionic conductivity in NaY dehydrated zeolite

  • A. Abdoulaye
  • S. S. Soulayman
  • G. Chabanis
  • J. C. Giuntini
  • J. V. Zanchetta
  • I. Brach


On the basis of experimental measurements of the electrical conductivity of the Nafaujasite zeolites (NaY), treated under vacuum up to 673 K for 24 hours, we clearly demonstrate that the behavior of the measured conductivity σac of the dehydrated zeolite NaY, over an interval of high frequency change, may be described by a power-law function: σac=A▹s. The exponent s, in this case, should be considered as temperature and frequency dependent when the parameter A is a temperature dependent function. On the other hand, when considering the measured conductivity as a sum of two terms (σac0+σ′(▹)) resulting from the contributions of the dc and the ac components respectively, we find that one of them obeys the Arrhenius law while the other can be expressed as A▹s. Parameter s is practically frequency independent when the frequency of the applied electrical field is higher than a characteristic value ▹c A comparison with the measurements performed on NaY dehydrated at 435 K is also included.


Physical Chemistry Analytical Chemistry Electrical Conductivity Zeolite Electronic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    O. Vigil, J. Fundora, F. Leccabue and B.E. Watts, Phys. Stat. Sol. a141, K37 (1994).Google Scholar
  2. [2]
    G. Kelemen and G. Schon, J. Mater. Science27, 6036 (1992).Google Scholar
  3. [3]
    O. Vigil, J. Fundora, H. Villavicencieo, M. Hernandez-Velez and R. RoqueMalherbe, J. Mater. Science Lett.11, 1725 (1992).Google Scholar
  4. [4]
    O. Vigil, H. Heredia, F. Leccabue and B. E. Watts, phys. Stat. Sol. a135, K71 (1993).Google Scholar
  5. [5]
    M.D. Baker, J. Zhang and M. BcBrien, J. Phys. Chem.99, 6635 (1995).Google Scholar
  6. [6]
    D.W. Breck, Zeolite Molecular Sieves: Structure, Chemestry and Use, R.E. Krieger Publishing, Malabar, FL, 1984.Google Scholar
  7. [7]
    See for example, a special topic on new frontiers in Material Science, Science263, 1698 (1994).Google Scholar
  8. [8]
    H. Lechert and W.D. Basler, J. Phys. Chem. Sol.50, 497 (1989), P. Pissis and D. Daoukaki-Diamanti, J. Phys. Chem. Sol.54, 701 (1993).CrossRefGoogle Scholar
  9. [9]
    T. Ohgushi, Bull. Chem. Soc., Japan61, 1109 (1988).Google Scholar
  10. [10]
    A. Szasz, S. Sabet and J. Liszi, Acta Chim. Hungar.125, 37 (1988).Google Scholar
  11. [11]
    E. Krogh Andersen, I.G. Krogh Andersen, E. Skou and S. Yde Andersen, Sol. Stat. Ionics18, 1171 (1986).Google Scholar
  12. [12]
    R.C.T. Slade, H. Jinku and G.B. Hix, Sol. Stat. Ionics57, 117 (1992).Google Scholar
  13. [13]
    N.H. Mongensen and E. Skou, Sol. Stat. Ionics77, 51 (1995).Google Scholar
  14. [14]
    I.R. Beattie and A. Dyer, Trans. Farad. Soc.53, 61 (1957).CrossRefGoogle Scholar
  15. [15]
    D.N. Stamires, J. Chem. Phys.36, 3174 (1962).CrossRefGoogle Scholar
  16. [16]
    T. Ohgushi and S. Sato, J. Sol. Stat. Chem.87, 95 (1990).CrossRefGoogle Scholar
  17. [17]
    J.J. Van Dun, Kr. Dhaeze, W.J. Mortier and D.E.W. Vaughan, J. Phys. Chem. Sol.50, 469 (1989).Google Scholar
  18. [18]
    F. Di Renzi, F. Fajula, F. Figueras, M. Agnés Nicole and T. Des Courieres, Synthesis of Microporous Materials, M.L. Occeli and H.E. Robson (eds), Van Nostrand Reinhold, New-York1, 105 (1992).Google Scholar
  19. [19]
    J.C. Giuntini, J.V. Zanchetta, I. Brach and S. Diaby, Advanced Methodology, in Coals Characterized (Elsevier, Amsterdam 1990).Google Scholar
  20. [20]
    J.C. Giuntini, A. Jabobker and J.V. Zanchetta, Clay Miner.20, 347 (1985).Google Scholar
  21. [21]
    H. Jain and O. Kanert, in: Defects in Insulating Materials, O. Karnet and J.M. Specht (eds), World Scientific, Singapore1, P. 274 (1993).Google Scholar
  22. [22]
    J.C. Giuntini, J.V. Zanchetta and F. Salam, Mat. Science and EngineeringB33, 75 (1995).Google Scholar
  23. [23]
    H. Jain and W.C. Huang, J. Non-Cryst. Sol.172, 1334 (1994).Google Scholar
  24. [24]
    A. Hunt, J. Non-Cryst. Sol.160, 283 (1993).Google Scholar
  25. [25]
    Ph. Colomban and J.C. Badot, Sol, Stat. Ionics6, 55 (1993).Google Scholar
  26. [26]
    A.R. Haydar and A.K. Jonsher, J. Chem. Soc. Farad. Trans.I82, 3535 (1985).Google Scholar
  27. [27]
    J.P. Tabourier, J.C. Carru and J.W. Wacrenier, J. Chem. Phys.87, 43 (1990).Google Scholar
  28. [28]
    M. Meyer, Ph. Maass and A. Bunde, J. Non-Cryst. Sol.172, 1292 (1994).CrossRefGoogle Scholar
  29. [29]
    K. Funke, Prog. Sol. Stat. Chem.22, 111 (1993).Google Scholar
  30. [30]
    A.S. Nowick, B.S. Lim and A.V. Vaysleyb, J. Non-Cryst. Sol.172, 1243 (1994).Google Scholar
  31. [31]
    D.P. Almond and A.R. West, Sol. Stat. Ion.9, 277 (1983).Google Scholar
  32. [32]
    J.C. Dyre, J. Non-Cryst. Sol.135, 219 (1991).CrossRefGoogle Scholar
  33. [33]
    A.K. Jonscher, Dielectric relaxation in solids (Chesla Dielectric, London 1983).Google Scholar
  34. [34]
    H. Jain and J.N. Mundy, J. Non-Cryst. Sol.91, 315 (1987).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1996

Authors and Affiliations

  • A. Abdoulaye
    • 1
  • S. S. Soulayman
    • 1
  • G. Chabanis
    • 1
  • J. C. Giuntini
    • 1
  • J. V. Zanchetta
    • 1
  • I. Brach
    • 2
    • 1
  1. 1.Laboratoire de Physico-Chimie des Materiaux Solides, Equipe de Chimie Physique, URA D0407Universite de Montpellier IIMontpellier cedex 05France
  2. 2.Commission of the European CommunitiesBruxellesBelgium

Personalised recommendations