Skip to main content
Log in

On-line sensing of aluminium in zinc hot-dip galvanizing baths using novel techniques

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Measurement and control of the dissolved aluminium levels in zinc hot-dip galvanizing baths, is of great importance to the steel industry. Current attempts at the cost-effective production of an aluminium sensor, for use in molten zinc, have not proved to be very successful. Possible sensor systems, based upon two contrasting electrolytes are proposed within this paper.

A sensor based upon thein-situ formation of sodium aluminium chloride, through D.C charging, is proposed. The charging process and EMF versus time relationship, for different aluminium concentrations, has been investigated.

A second system, based upon the trivalent ion conducting electrolyte, aluminium tungstate, has also been studied. Aluminium tungstate, Al2(WO4)3, has been prepared by a simple calcination step. Modification of the structure of the electrolyte, to improve its conduction properties, has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

5. References

  1. “Sensors for On-Line Control of Aluminium and Iron in Galvanising Bath”, Private Communication, British Steel plc.

  2. G.M. Kale, A.J. Davidson and D.J. Fray, Solid State Ionics.86–88, 1101 (1996).

    Google Scholar 

  3. J.W. Fergus and S. Hui, Sensors and Modelling in Materials Processing: Techniques and Applications, TMS Annual Meeting, (1997), pp. 381–395.

  4. A.R.P. Ghuman and J.I. Goldstein, Metallurgical Transactions2, 2903 (1971).

    CAS  Google Scholar 

  5. Y. Adachi, M, Arai and T. Nakamori, Tetsu To Hagane-Journal of The Iron and Steel Institute of Japan80, 647 (1994).

    CAS  Google Scholar 

  6. L.A. Rocha and M.A. Barbosa, Corrosion47, 536 (1991).

    CAS  Google Scholar 

  7. V. Jagannathan, JOM, August, (1993) pp. 48–51.

  8. D.J. Fray, Solid State Ioni`cs86–88, 1045 (1996).

    Google Scholar 

  9. S. Matsubara, T. Tsutae, K. Nakamoto, Y. Hirose, I. Katayama, and T. Iida, ISIJ International35, 512 (1995).

    CAS  Google Scholar 

  10. S. Matsubara, T. Tsutae, K. Nakamoto, I. Katayama and T. Iida, Materials Transactions JIM36, 1255 (1995).

    CAS  Google Scholar 

  11. X.Y. Yan, D.E. Langberg and W.J. Rankin, Metallurgical Transactions B24B, 1037 (1993).

    CAS  Google Scholar 

  12. N. Qiang, N.Y. Tang and G.R. Adams, Sensors and Modelling in Materials Processing: Techniques and Applications (1997) pp. 397–408.

  13. U.I. Shvartsman, Journal of Physical Chemistry (USSR)14, 254 (1940).

    Google Scholar 

  14. Janz et al., J. Phys. Chem. Ref. Data4, 871 (1975).

    CAS  Google Scholar 

  15. “Zebra High Energy Battery — Preliminary Information”, ZEBRA, AEG Anglo-Batteries Ltd.

  16. “HSC Chemistry for Windows”, Outokumpu Research.

  17. I. Barin et al., “Thermochemical Properties of Substances”, Springer-Verlag, 1977.

  18. “JANAF — Thermochemical Tables”, Dow Chemical Company (1967).

  19. B.K. Reddy and K.N. Reddy, Journal of Materials Science23, 2693 (1988).

    Article  CAS  Google Scholar 

  20. Hultgren et al., “Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals.

  21. D.J. Fray, Journal of Materials Education, in print.

  22. R.V. Kumar, “Experimental Techniques in Chemical Metallurgy” Graduate Lecture Course, University of Cambridge (1998).

  23. Bjorum et al., Electochimica Acta26, 487 (1981).

    Google Scholar 

  24. S. Shaw and G.S. Perry, Thermochimica Acta157, 329 (1990).

    Article  CAS  Google Scholar 

  25. A.P. Palkin and O.K. Belousov, Zhur. Neorg. Khim.2, 1627 (1957).

    Google Scholar 

  26. B. Dunn and G.C. Farrington, Solid State Ionics91, 223 (1983).

    Google Scholar 

  27. F. Tietz and W. Urland, Solid State Ionics46, 331 (1991).

    Article  CAS  Google Scholar 

  28. A.M. George and A.N. Virkar, J. Phys. Chem. Solids49, 743 (1988).

    CAS  Google Scholar 

  29. Imanaka et al., Solid State Ionics113–115, 545 (1998).

    Google Scholar 

  30. Imanaka et al., Chemistry of Materials10, 2542 (1998).

    CAS  Google Scholar 

  31. Imanaka et al., Chemistry of Materials9, 1649 (1997).

    Google Scholar 

  32. Imanaka et al, Electrochemical and Solid State Letters1, 271 (1998).

    CAS  Google Scholar 

  33. Tamura et al., Chemistry of Materials10, 1958 (1998).

    Article  CAS  Google Scholar 

  34. C.C. Liang, Journal of the Electrochemical Society120, 1289 (1973).

    CAS  Google Scholar 

  35. C.C. Liang, Journal of the Electrochemical Society123, 661 (1976).

    Google Scholar 

  36. Fujitsu et al., Journal of Materials Science20, 2103 (1985).

    Article  CAS  Google Scholar 

  37. T. Jow and J.B. Wagner, Journal of the Electrochemical Society126, 1963 (1979).

    CAS  Google Scholar 

  38. K. Shahi and J.B. Wagner, Journal of the Electrochemical Society128, 6 (1981).

    CAS  Google Scholar 

  39. Kohler et al., Solid State Ionics113–115, 553 (1998).

    Google Scholar 

  40. “Handbook of Chemistry and Physics — 57th Edition” CRC Press (1976–1977).

  41. J. Molenda and A. Kubik, Phys. Stat. Sol. (b)191, 471 (1995).

    CAS  Google Scholar 

  42. K. Nassau et al, Journal of the Physics and Chemistry of Solids26, 1805 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finch, S.L., Kumar, R.V. On-line sensing of aluminium in zinc hot-dip galvanizing baths using novel techniques. Ionics 5, 299–310 (1999). https://doi.org/10.1007/BF02375854

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375854

Keywords

Navigation