Advertisement

Ionics

, Volume 2, Issue 5–6, pp 361–373 | Cite as

Orthotropic ambipolar diffusion model for γ-manganese dioxide. The role of the reactive sub-surface

  • H. Kahil
Article

Abstract

γ-manganese dioxide is considered as a continuing solid medium, when it is submitted to diffusion laws. These are derived from an appropriate adoptation of “the analytical theory of heat diffusion in the anisotropic medium”. We have taken into account the ambipolar nature of the diffusion and the internal electrical field which accompanies it. The “instantaneous or continuous point source” theory, which gives a physical interpretation to the analytical solution of the heat conduction differential equation, was applied. With this we explain how particles diffuse from the discontinuous reactive area into the γ-MnO2 bulk.

Keywords

Differential Equation Dioxide Electronic Material Heat Conduction Point Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Kahil, J. Phys: Cond. Matter7, 3227 (1995).CrossRefGoogle Scholar
  2. [2]
    H. Kahil, Etat thesis INP. Grenoble (1985).Google Scholar
  3. [3]
    H. Kahil, Journées d'Electrochimie Grenoble France (1993).Google Scholar
  4. [4]
    J.J. Coleman, Trans. Electrochem. Soc.90, 545 (1946).Google Scholar
  5. [5]
    J.P. Gabano, J. Seguret and J.F. Laurent, J. Electrochem. Soc.117, 147 (1970).Google Scholar
  6. [6]
    S. Atlung, K. West and T. Jacobsen, J. Electrochem. Soc.126, 1311 (1979).Google Scholar
  7. [7]
    H. Kahil, F. Dalard, J. Guitton et J.P. Cohen Addad, J. Surf. Technol.16, 331 (1982).Google Scholar
  8. [8]
    X. Xia, L. Hong and C. Zhen-Hai, J. Electrochem. Soc.136, 266 (1989).Google Scholar
  9. [9]
    X. Xia, L. Hong and C. Zhen-Hai, J. Electrochem. Soc.136, 2771 (1989).Google Scholar
  10. [10]
    F.L. Tye and S.W. Tye, J. App. Electochem.2, 425 (1995).Google Scholar
  11. [11]
    P. Ruetschi and R. Giovanoli, J. Electrochem. Soc.131, 2737 (1984).Google Scholar
  12. [12]
    P. Ruetschi and R. Giovanoli, J. Electrochem. Soc.135, 2663 (1988).Google Scholar
  13. [13]
    J. Brenet, J. Energétique des Generateurs Electrochimiques (Lavoisier: Tech. et Docum.) (1987).Google Scholar
  14. [14]
    T.N. Andersen, Progress in Batteries and Battery Materials IBA Meeting (Sydney, 1992), vol. 11, ed D.A. J. Swinkels (ITE-JEC) p. 105.Google Scholar
  15. [15]
    L.A. Shuvalov, Modern Crystallography IV, (Springer-Verlag Berlin, Heidelberg, 1988).Google Scholar
  16. [16]
    F. Fer, Thermodynarnique Macroscopique (Paris: Gordon and Breach, 1970).Google Scholar
  17. [17]
    J R Manning, Diffusion Kinetics for Atoms in Crystals (Princeton, NJ Van Nostrand, 1968).Google Scholar
  18. [18]
    D. Schwarzenbach, Cristallographie (Lausanne: Presses polytechniques et universitaires romandes, 1993).Google Scholar
  19. [19]
    J. Martinet, Thermocinétique approfondie (Lavoisier: Teeh. et doeum, 1990).Google Scholar
  20. [20]
    A.V. Luikov, Analytieal Heat Transfer Theory (London: Aeadernie Press, 1992).Google Scholar
  21. [21]
    H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids (Oxford: Clarendon Press, 1990).Google Scholar
  22. [22]
    Y. Adda et J. Philibert, La Diffusion dans les Solides (Paris: Presses Universitaires de France, 1966).Google Scholar
  23. [23]
    W. Weppner, Solid State Microbatteries (New York: Plenum Press, 1990).Google Scholar
  24. [24]
    D.R. Lovett, Tensor Properties of Crystals (Bristol: Adam Hilger, IOP, 1989).Google Scholar
  25. [25]
    D.P. Kennedy and R.P. O'Brien, IBM J. Res. Dev.9, 179 (1965).Google Scholar
  26. [26]
    A.B. Scott, J. Electrochem. Soc.107, 941 (1960).Google Scholar
  27. [27]
    F. Kornfeil, J. Eleetrochem. Soc.109, 349 (1962).Google Scholar
  28. [28]
    R. Huber and J. Bauer, J. Electrochem. Tech.5, 542 (1967).Google Scholar
  29. [29]
    M.A. Malati, M.W. Rophael and Bhayat, Electrochim. Acta26, 239 (1981).CrossRefGoogle Scholar
  30. [30]
    V. Smirnov, Cours de Mathematiques Superieures (Moscou: Mir, 1970).Google Scholar
  31. [31]
    H. Margenau and G.H. Murphy, The Mathematics of Physics and Chemistry (New York: Krieger, 1977).Google Scholar

Copyright information

© IfI - Institute for Ionics 1996

Authors and Affiliations

  • H. Kahil
    • 1
  1. 1.Laboratoire de Photochimie et d'Electrochimie Moléculaire U.J.FSaint Martin d'Hères CedexFrance

Personalised recommendations