Ionics

, Volume 3, Issue 3–4, pp 201–208 | Cite as

Thermal desorption study of Oxygen adsorption on Pt, Ag & Au films deposited on YSZ

  • D. Tsiplakides
  • S. Neophytides
  • C. G. Vayenas
Article

Abstract

The Thermal Desorption or Temperature Programmed Desorption (TPD) technique has been used for the study of oxygen adsorption on Pt, Ag and Au catalyst films deposited on YSZ. The catalyst film was deposited on the one side of the YSZ specimen while on the other side gold counter and reference electrodes were deposited, constructing a three-electrode electrochemical cell similar to those used in Electrochemical Promotion studies. Oxygen adsorption has been carried out either by exposing the samples to gaseous oxygen (gas phase adsorption) or by the application of a constant current between the catalyst/working electrode and the counter electrode (electrochemical adsorption) or by mixed gas phase and electrochemical adsorption. Oxygen adsorption was carried out at temperatures between 200 and 480 °C. After exposure to gaseous oxygen, normal adsorbed atomic oxygen species have been observed on Pt and Ag surfaces while there was no detectable amount of adsorbed oxygen on Au. Electrochemical O2− pumping to Pt, Ag and Au catalyst films creates strongly bonded “backspillover” anionic oxygen, along with the more weakly bonded atomic oxygen. Electrochemical O2− pumping to Pt, Ag and Au catalyst films in presence of preadsorbed oxygen creates strongly bonded “backspillover” anionic oxygen, with a concomitant pronounced lowering of the Tp of the more weakly bound preadsorbed atomic oxygen. The two oxygen species co-exist on the surface. The activation energy for oxygen desorption or, equivalently, the binding strength of adsorbed oxygen was found to decrease linearly with increasing catalyst potential, for all three metal electrodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    C.G. Vayenas, S. Bebelis and S. Neophytides, J. Phys. Chem.92, 5083 (1988).CrossRefGoogle Scholar
  2. [2]
    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London)343, 625 (1990).CrossRefGoogle Scholar
  3. [3]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today11, 303 (1992).CrossRefGoogle Scholar
  4. [4]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S. Neophytides in: Modern Aspects of Electrochemistry (J.O' M. Bockris, B.E. Conway and R.E. White, Eds.), Number 29, 1996, p. 57.Google Scholar
  5. [5]
    J. Pritchard, Nature (London)343, 592 (1990).CrossRefGoogle Scholar
  6. [6]
    S. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature (London)370, 45 (1994).CrossRefGoogle Scholar
  7. [7]
    B. Grzybowska-Swierkosz and J. Haber in: Annual Reports on the Progress of Chemistry, vol. 91 (The Royal Society of Chemistry, Cambridge, 1994) pp. 395–439.Google Scholar
  8. [8]
    J. O' M. Bockris and Z.S. Minevski, Electrochim. Acta39, 1471 (1994).CrossRefGoogle Scholar
  9. [9]
    I. Harkness and R. M. Lambert, J. Catal.152, 211 (1995).CrossRefGoogle Scholar
  10. [10]
    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).CrossRefGoogle Scholar
  11. [11]
    W. Zipprich, H.-D. Wiemhöfer, U. Vöhrer and W. Göpel. Ber. Bunsengesel. Phys. Chem.99, 1406 (1995).Google Scholar
  12. [12]
    D.I. Kontarides, G.N. Papatheodorou, C.G. Vayenas and X.E. Verykios, Ber. Bunsengesel. Phys. Chem.97, 709 (1993).Google Scholar
  13. [13]
    M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke and C. Cavalca, Surface Science369, 351 (1996).CrossRefGoogle Scholar
  14. [14]
    S. Ladas, S. Bebelis and C.G. Vayenas, Surface Sci.251/252, 1062 (1991).CrossRefGoogle Scholar
  15. [15]
    A. Palermo, M.S. Tikhov, N.C. Filkin, R.M. Lambert, I.V. Yentekakis and C.G. Vayenas, Studies in Surface Science and Catalysis101, 513 (1996).Google Scholar
  16. [16]
    S. Neophytides and C.G. Vayenas, J. Phys. Chem.99, 17063 (1995).CrossRefGoogle Scholar
  17. [17]
    D.D. Eley and P.B. Moore, Surface Sci.76, L599 (1978).Google Scholar
  18. [18]
    N.D.S. Canning, D. Outka and R.J. Madix, Surface Sci.14, 240 (1984).Google Scholar
  19. [19]
    J.J. Pireaux, M. Chtaïb, J.P. Delrue, P.A. Thiry, M. Liehr and R. Caudano, Surface Sci.141, 211 (1984).Google Scholar
  20. [20]
    P.R. Norton, Surface Sci.47, 98 (1975).CrossRefGoogle Scholar
  21. [21]
    G.N. Derry and P.N. Ross, J. Chem. Phys.82, 2772 (1985).CrossRefGoogle Scholar
  22. [22]
    Y. Ohno and T. Matsushima, Surface Sci.241, 47 (1991).CrossRefGoogle Scholar
  23. [23]
    M.T. Paffett, C.T. Campbell, R.G. Windham and B.E. Koel, Surface Sci.207, 274 (1989).CrossRefGoogle Scholar
  24. [24]
    M.A. Barteau, E.I. Ko and R.J. Madix, Surface Sci.102, 99 (1981).CrossRefGoogle Scholar
  25. [25]
    H. Steininger, S. Lehwald and H. Ibach, Surface Sci.123, 1 (1982).Google Scholar
  26. [26]
    J. L. Gland and V.N. Korchak, Surface Sci.75, 733 (1978).CrossRefGoogle Scholar
  27. [27]
    C.T. Campbell, G. Ertl, H. Kuipers and J. Segner, Surface Sci.107, 220 (1981).Google Scholar
  28. [28]
    G. Kneringer and F.P. Netzer, Surface Sci.49, 125 (1975).CrossRefGoogle Scholar
  29. [29]
    P.R. Norton, K. Griffiths and P.E. Bindner, Surface Sci.138, 125 (1984).CrossRefGoogle Scholar
  30. [30]
    J.L. Gland, B.A. Sexton and G.B. Fischer, Surface Sci.95, 587 (1980).CrossRefGoogle Scholar
  31. [31]
    A. Winkler, X. Guo, H.R. Siddiqui, P.L. Hagans and J.T. Yates, Surface Sci.201, 419 (1988).CrossRefGoogle Scholar
  32. [32]
    J.L. Gland, Surface Sci.93, 487 (1980).CrossRefGoogle Scholar
  33. [33]
    J.L. Falconer and R.J. Madix, Surface Sci.48, 393 (1975).CrossRefGoogle Scholar
  34. [34]
    S. Pacchioni, F. Ilas, S. Neophytides and C.G. Vayenas, J. Phys. Chem.100, 16653 (1996).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1997

Authors and Affiliations

  • D. Tsiplakides
    • 1
  • S. Neophytides
    • 2
    • 1
  • C. G. Vayenas
    • 1
  1. 1.Dept. of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Inst. of Chemical Engineering and High Temperature Chemical ProcessesPatrasGreece

Personalised recommendations