Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermal desorption study of Oxygen adsorption on Pt, Ag & Au films deposited on YSZ

  • 199 Accesses

  • 7 Citations

Abstract

The Thermal Desorption or Temperature Programmed Desorption (TPD) technique has been used for the study of oxygen adsorption on Pt, Ag and Au catalyst films deposited on YSZ. The catalyst film was deposited on the one side of the YSZ specimen while on the other side gold counter and reference electrodes were deposited, constructing a three-electrode electrochemical cell similar to those used in Electrochemical Promotion studies. Oxygen adsorption has been carried out either by exposing the samples to gaseous oxygen (gas phase adsorption) or by the application of a constant current between the catalyst/working electrode and the counter electrode (electrochemical adsorption) or by mixed gas phase and electrochemical adsorption. Oxygen adsorption was carried out at temperatures between 200 and 480 °C. After exposure to gaseous oxygen, normal adsorbed atomic oxygen species have been observed on Pt and Ag surfaces while there was no detectable amount of adsorbed oxygen on Au. Electrochemical O2− pumping to Pt, Ag and Au catalyst films creates strongly bonded “backspillover” anionic oxygen, along with the more weakly bonded atomic oxygen. Electrochemical O2− pumping to Pt, Ag and Au catalyst films in presence of preadsorbed oxygen creates strongly bonded “backspillover” anionic oxygen, with a concomitant pronounced lowering of the Tp of the more weakly bound preadsorbed atomic oxygen. The two oxygen species co-exist on the surface. The activation energy for oxygen desorption or, equivalently, the binding strength of adsorbed oxygen was found to decrease linearly with increasing catalyst potential, for all three metal electrodes.

This is a preview of subscription content, log in to check access.

6. References

  1. [1]

    C.G. Vayenas, S. Bebelis and S. Neophytides, J. Phys. Chem.92, 5083 (1988).

  2. [2]

    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London)343, 625 (1990).

  3. [3]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today11, 303 (1992).

  4. [4]

    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S. Neophytides in: Modern Aspects of Electrochemistry (J.O' M. Bockris, B.E. Conway and R.E. White, Eds.), Number 29, 1996, p. 57.

  5. [5]

    J. Pritchard, Nature (London)343, 592 (1990).

  6. [6]

    S. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature (London)370, 45 (1994).

  7. [7]

    B. Grzybowska-Swierkosz and J. Haber in: Annual Reports on the Progress of Chemistry, vol. 91 (The Royal Society of Chemistry, Cambridge, 1994) pp. 395–439.

  8. [8]

    J. O' M. Bockris and Z.S. Minevski, Electrochim. Acta39, 1471 (1994).

  9. [9]

    I. Harkness and R. M. Lambert, J. Catal.152, 211 (1995).

  10. [10]

    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).

  11. [11]

    W. Zipprich, H.-D. Wiemhöfer, U. Vöhrer and W. Göpel. Ber. Bunsengesel. Phys. Chem.99, 1406 (1995).

  12. [12]

    D.I. Kontarides, G.N. Papatheodorou, C.G. Vayenas and X.E. Verykios, Ber. Bunsengesel. Phys. Chem.97, 709 (1993).

  13. [13]

    M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke and C. Cavalca, Surface Science369, 351 (1996).

  14. [14]

    S. Ladas, S. Bebelis and C.G. Vayenas, Surface Sci.251/252, 1062 (1991).

  15. [15]

    A. Palermo, M.S. Tikhov, N.C. Filkin, R.M. Lambert, I.V. Yentekakis and C.G. Vayenas, Studies in Surface Science and Catalysis101, 513 (1996).

  16. [16]

    S. Neophytides and C.G. Vayenas, J. Phys. Chem.99, 17063 (1995).

  17. [17]

    D.D. Eley and P.B. Moore, Surface Sci.76, L599 (1978).

  18. [18]

    N.D.S. Canning, D. Outka and R.J. Madix, Surface Sci.14, 240 (1984).

  19. [19]

    J.J. Pireaux, M. Chtaïb, J.P. Delrue, P.A. Thiry, M. Liehr and R. Caudano, Surface Sci.141, 211 (1984).

  20. [20]

    P.R. Norton, Surface Sci.47, 98 (1975).

  21. [21]

    G.N. Derry and P.N. Ross, J. Chem. Phys.82, 2772 (1985).

  22. [22]

    Y. Ohno and T. Matsushima, Surface Sci.241, 47 (1991).

  23. [23]

    M.T. Paffett, C.T. Campbell, R.G. Windham and B.E. Koel, Surface Sci.207, 274 (1989).

  24. [24]

    M.A. Barteau, E.I. Ko and R.J. Madix, Surface Sci.102, 99 (1981).

  25. [25]

    H. Steininger, S. Lehwald and H. Ibach, Surface Sci.123, 1 (1982).

  26. [26]

    J. L. Gland and V.N. Korchak, Surface Sci.75, 733 (1978).

  27. [27]

    C.T. Campbell, G. Ertl, H. Kuipers and J. Segner, Surface Sci.107, 220 (1981).

  28. [28]

    G. Kneringer and F.P. Netzer, Surface Sci.49, 125 (1975).

  29. [29]

    P.R. Norton, K. Griffiths and P.E. Bindner, Surface Sci.138, 125 (1984).

  30. [30]

    J.L. Gland, B.A. Sexton and G.B. Fischer, Surface Sci.95, 587 (1980).

  31. [31]

    A. Winkler, X. Guo, H.R. Siddiqui, P.L. Hagans and J.T. Yates, Surface Sci.201, 419 (1988).

  32. [32]

    J.L. Gland, Surface Sci.93, 487 (1980).

  33. [33]

    J.L. Falconer and R.J. Madix, Surface Sci.48, 393 (1975).

  34. [34]

    S. Pacchioni, F. Ilas, S. Neophytides and C.G. Vayenas, J. Phys. Chem.100, 16653 (1996).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsiplakides, D., Neophytides, S. & Vayenas, C.G. Thermal desorption study of Oxygen adsorption on Pt, Ag & Au films deposited on YSZ. Ionics 3, 201–208 (1997). https://doi.org/10.1007/BF02375617

Download citation

Keywords

  • Thermal Desorption
  • Temperature Programme Desorption
  • Anionic Oxygen
  • Catalyst Film
  • Oxygen Desorption