Advertisement

Ionics

, Volume 3, Issue 3–4, pp 170–176 | Cite as

Vibrational spectroscopy and electrochemical properties of LiNi0.7Co0.3O2 cathode material for rechargeable lithium batteries

  • A. Rougier
  • G. A. Nazri
  • C. Julien
Article

Abstract

We are reporting the synthesis and characterization of solid solutions of the LiNiO2 and LiCoO2 system. Substitution of cobalt for nickel in the LiNi1−yCoyO2 phases provides significant improvements in the two-dimensionality of the crystal lattice and ease the large scale synthesis. This structural effect improves the reversibility of the lithium intercalation-deintercalation process. We have evaluated the vibrational spectra and electrochemical properties of LiNi0.7Co0.3O2 (charge-discharge profiles and cyclic voltammetry) and compared the results with those of the end members, i.e., LiNiO2 and LiCoO2. The local environment of cations against oxygen neighboring atoms has been determined.

Keywords

Lithium Cobalt Cyclic Voltammetry Electrochemical Property Local Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    M.G. Thomas, W.I.F. David, J.B. Goodenough and P. Groves, Mat. Res. Bull.20, 1137 (1985).CrossRefGoogle Scholar
  2. [2]
    M. Broussely, F. Perton, P. Biensan, J.M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier and J.P. Peres, J. Power Sources54, 109 (1995).Google Scholar
  3. [3]
    J.R. Dahn, U. von Sacken, M.W. Juskow and J. Al-Janabi, J. Electrochem. Soc.138, 2207 (1991).Google Scholar
  4. [4]
    C. Delmas, I. Saadoune and A. Rougier, J. Power Sources43–44, 595 (1993).Google Scholar
  5. [5]
    L.D. Dyer, B.S. Borie and G.P. Smith, J. Amer. Chem. Soc.76, 1499 (1954).Google Scholar
  6. [6]
    J.B. Goodenough, D.G. Wickham and W.J. Croft, J. Phys. Chem. Solids5, 107 (1958).Google Scholar
  7. [7]
    J.N. Reimers, J.R. Dahn, J.E. Greedan, C.V. Stager, G. Liu, I. Davidson and U. von Sacken, J. Solid State Chem.102, 216 (1993).CrossRefGoogle Scholar
  8. [8]
    R. Kanno, H. Kubo, Y. Kawamoto, T. Kamiyama, F. Izumi, Y. Takeda and M. Takano, J. Solid State Chem.110, 216 (1994).CrossRefGoogle Scholar
  9. [9]
    A. Rougier, P. Gravereau, and C. Delmas, J. Electrochem. Soc.143, 1168 (1996).Google Scholar
  10. [10]
    A. Rougier, I. Saadoune, P. Gravereau, P. Willmann and C. Delmas, Solid State Ionics90, 83 (1996).CrossRefGoogle Scholar
  11. [11]
    J.R. Dahn, U. von Sacken and C.A. Michal, Solid State Ionics44, 87 (1990).CrossRefGoogle Scholar
  12. [12]
    R.K. Moore and W.B. White, J. Am. Ceramic Soc.53, 679 (1970).Google Scholar
  13. [13]
    M. Inaba, Y. Todzuka, H. Yoshida, Y. Grincourt, A. Tasaka, Y. Tomida and Z. Ogumi, Chem. Lett. 889 (1995).Google Scholar
  14. [14]
    T. Ohzuku and A. Ueda, J. Electrochem. Soc.141, 2972 (1994).Google Scholar
  15. [15]
    I. Saadoune and C. Delmas, J. Mater. Chem.6, 193 (1996).CrossRefGoogle Scholar
  16. [16]
    P. Tarte and J. Preudhomme, Spectrochim. Acta26A, 747 (1970).Google Scholar
  17. [17]
    E. Zhecheva and R. Stoyanova, Solid State Ionics66, 143 (1993).CrossRefGoogle Scholar
  18. [18]
    W. Huang and R. Frech, Solid State Ionics86–88, 395 (1996).Google Scholar
  19. [19]
    I.F. Chang and S.S. Mitra, Phys. Rev.172, 924 (1968).Google Scholar
  20. [20]
    P. Tarte, Spectrochim. Acta20, 238 (1964).Google Scholar
  21. [21]
    P. Tarte, J. Inorg. Nucl. Chem.29, 915 (1967).CrossRefGoogle Scholar
  22. [22]
    P. Hope and B. Schepers, Z. Anorg. Allgem. Chem.295, 233 (1958).Google Scholar
  23. [23]
    M.H. Brodsky, G. Lucovsky, M.F. Chen, and T.S. Plaskett, Phys. Rev. B2, 3303 (1970).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1997

Authors and Affiliations

  • A. Rougier
    • 1
  • G. A. Nazri
    • 1
  • C. Julien
    • 2
  1. 1.Physics and Physical-Chemistry Dept.General Motors R&D Center, RCELWarrenUSA
  2. 2.Laboratoire des Milieux Désordonnés et Hétérogènes, associé au CNRS UA800Université Pierre et Marie CurieParis cedex 05France

Personalised recommendations