, Volume 3, Issue 1–2, pp 128–133 | Cite as

Methane activation on a La0.6Sr0.4Co0.8Fe0.2O3 perovsksite; catalytic and electrocatalytic results

  • C. Athanasiou
  • G. Marnellos
  • J. E. ten Elshof
  • P. Tsiakaras
  • H. J. M. Bouwmeester
  • M. Stoukides


The catalytic and electrocatalytic behaviour of the La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) perovskite deposited on yttria stabilized zirconia (YSZ), was studied during the reaction of methane oxidation. Experiments were carried out at atmospheric pressure, and at temperatures between 600 and 900 °C. When, instead of cofeeding with methane in the gas phase, oxygen was electrochemically supplied as O2−, considerable changes in the methane conversion and product selectivity were observed. The non-faradaic effects (NEMCA) were also studied and compared to those observed with metal catalysts.


Oxidation Oxygen Physical Chemistry Methane Analytical Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.E. Wolf, “Methane Conversion by Oxidative Processes”, Van Norstrand Reinhold, New York (1992).Google Scholar
  2. [2]
    Y. Amenomiya, V.I. Birss, M. Goledzinowski, J. Galuszka, and A. Sanger, Cat. Rev. - Sci. Eng.,3 (3), 163 (1990).Google Scholar
  3. [3]
    D. Eng and M. Stoukides, Catal. Rev.-Sci. Eng.33, 3759 (1991).Google Scholar
  4. [4]
    M. Stoukides, J Appl. Electroch.25, 899 (1995).Google Scholar
  5. [5]
    P. Tsiakaras, G. Marnellos, C. Athanasiou, M. Stoukides, H.J. M. Bouwmeester, J.E. ten Elshof and H. Verweij, Sol. St. Ionics86–88, 1451 (1996).Google Scholar
  6. [6]
    J.E. ten Elshof, H.J. M. Bouwmeester and H. Verweij, Appl. Catal.130, 195 (1995).Google Scholar
  7. [7]
    A. Kungolos, P. Tsiakaras and M. Stoukides, Ionics1, 214 (1995).Google Scholar
  8. [8]
    P.H. Chiang, D. Eng, and M. Stoukides, Sol. St. Ionics67, 917 (1994).Google Scholar
  9. [9]
    M. Stoukides, Ind. Eng. Chem. Res.27, 1745 (1988).CrossRefGoogle Scholar
  10. [10]
    C.G. Vayenas, M.M. Jaksic, S.I. Bebelis and S. G. Neophytides, in: “Modern Aspects in Electrochemistry”, Vol. 29, eds. J.O'M. Bockris et al, Plenum Press, New York, (1996), ch. 2.Google Scholar
  11. [11]
    D.B. Meadowcroft, Nature226, 847 (1970).CrossRefGoogle Scholar
  12. [12]
    P.K. Gallagher, D.W. Johnson, Jr. and F. Schrey, Mat. Res. Bull.9, 1345 (1974).CrossRefGoogle Scholar
  13. [13]
    T. Seiyama, Catal. Rev.-Sci. Eng.34, 281 (1992).Google Scholar
  14. [14]
    A.G. Andersen, T. Hayakawa, M. Shimizu, K. Suzuki and K. Takehira, Catalysis Letters23, 59 (1994).Google Scholar
  15. [15]
    M. Baerns and J.R.H. Ross, in: “Perspectives in Catalysis”, eds. J.M. Thomas and K.I. Zamaraev, (Blackwell Scientific Publications 1992) 315.Google Scholar
  16. [16]
    H. Alqahtany, D. Eng and M. Stoukides, Energy & Fuels7, 495 (1993).CrossRefGoogle Scholar
  17. [17]
    I.V. Yentekakis, Y. Jiang, S. Neophytides, S. Bebelis and C.G. Vayenas, Ionics1, 491 (1995).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1997

Authors and Affiliations

  • C. Athanasiou
    • 1
  • G. Marnellos
    • 1
  • J. E. ten Elshof
    • 2
  • P. Tsiakaras
    • 3
  • H. J. M. Bouwmeester
    • 2
  • M. Stoukides
    • 1
  1. 1.Chemical Engineering Department and Chemical Process Engineering Research InstituteAristotle UniversityThessalonikiGreece
  2. 2.Dept. of Chemical TechnologyUniv. of TwenteEnschedeThe Netherlands
  3. 3.School of Technological Sciences, Department of Mechanical & Industrial EngineeringUnivercity of ThessalyVolosGreece

Personalised recommendations