Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrochemical promotion of ammonia decomposition over Fe catalyst films interfaced with K+- & H+- conductors

  • 104 Accesses

  • 23 Citations

Abstract

The electrochemical promotion of the ammonia decomposition reaction over Fe catalyst films interfaced with K2YZr(PO4)3, a K+-conductor, and CaZr0.9In0.1O3−a, a H+-conductor, was investigated at temperatures 500–600 °C. At the higher temperatures, the catalytic rate was found to decrease significantly and reversibly upon decreasing the catalyst potential, VWR, i.e., upon pumping K+ or H+ to the Fe surface. The effect of potassium was more pronounced than that of protons leading to almost complete poisoning of the reaction. At the lower temperatures, it was found that electrochemical supply of moderate amounts of potassium causes an enhancement in the catalytic rate while higher amounts poison the reaction.

The study reports, for the first time, electrochemical promotion over a Fe catalyst and shows that K+-conductors can also be used to induce the effect of Non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA). The effect of backspillover potassium ions and protons on the catalytic activity is discussed in terms of the theory of electrochemical promotion by considering the effect of varying catalyst work function on the coverages and chemisorptive bond strengths of NH3, N and H. The results show the possibility of using electrically promoted catalyst pellets to alter the performance of industrial reactions.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    C.G. Vayenas, S. Bebelis and S. Neophytides, J.Phys. Chem.92, 5083 (1988).

  2. [2]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today11, 303 (1992) and references therein.

  3. [3]

    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S. Neophytides, in: Modern Aspects of Electrochemistry,No 29, (J.O 'M. Bockris, B.E. Conway and R.E. White, Eds) Plenum Press, New York, 1996) pp. 57–202 and references therein.

  4. [4]

    J.O. 'M Bockris and Z. S. Minevski, Electrochimica Acta39, 1471 (1994).

  5. [5]

    J. Pritchard, Nature343, 592 (1990).

  6. [6]

    B. Crzybowska-Swierkosz and J. Haber in Annual Reports on the Progress of Chemistry, Vol.91 (The Royal Society of Chemistry, Cambridge, U.K., 1994) pp. 395–439

  7. [7]

    I.R. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).

  8. [8]

    S. Bebelis and C.G. Vayenas, J. Catal.118, 125 (1989).

  9. [9]

    I.V. Yentekakis, G. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146, 292 (1994).

  10. [10]

    P.D. Petrolekas, S. Brosda and C.G. Vayenas, J. Electrochem. Soc., in press.

  11. [11]

    M. Makri, A. Buekenhoudt, J. Luyten and C.G. Vayenas, Ionics2, 282 (1996).

  12. [12]

    S. Neophytides, D. Tsiplakides, O. Enea, M.M. Jaksic and C.G. Vayenas, J. Electrochem. Soc. (in press).

  13. [13]

    I.V. Yentekakis and C.G. Vayenas, J. Catal.149, 238 (1994).

  14. [14]

    C. Pliangos, I.V. Yentekakis, S. Ladas, and C.G. Vayenas, J. Catal.159, 189 (1996).

  15. [15]

    P.D. Petrolekas, S. Balomenou and C.G. Vayenas, J. Electrochem. Soc., submitted.

  16. [16]

    S. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature (London)370, 45 (1994).

  17. [17]

    S. Neophytides and C.G. Vayenas, J. Phys. Chem.99, 17063 (1995).

  18. [18]

    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).

  19. [19]

    C.G. Vayenas, S. Bebelis, and S. Ladas, Nature (London)343, 625 (1990).

  20. [20]

    M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke, and C. Cavalca, Surface Science369, 351 (1996).

  21. [21]

    U. Guth, B. Löscher, P. Schmidt, H. Wulff and H.-H. Möbius, Solid State Ionics51, 183 (1992).

  22. [22]

    U. Guth, S. Brosda, B. Loescher, A. Simmich, P. Schmidt, H.-H. Möbius, Material Science Forum76, 137 (1991).

  23. [23]

    Ch. Karavasilis, S. Bebelis, and C.G. Vayenas, J. Catal.160, 205 (1996).

  24. [24]

    I.R. Harkness, C. Hardacre, R.M. Lambert, I.V. Yentekakis and C.G. Vayenas, J. Catal.160, 19 (1996).

  25. [25]

    W. Zipprich, H.-D. Wiemhöfer, K. Vohrer, and, W. Göpel, Ber. Bunsenges. Phys. Chem.99, 1406 (1995).

  26. [26]

    S. B. Lee, M. Weiss and G. Ertl, Surface Science108, 357 (1981)

  27. [27]

    Z. Kowalcyk, J. Sentek, S. Jodzis, M. Muhler and O. Hinrichsen, J. Catal.169, 407 (1997) and references therein.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pitselis, G.E., Petrolekas, P.D. & Vayenas, C.G. Electrochemical promotion of ammonia decomposition over Fe catalyst films interfaced with K+- & H+- conductors. Ionics 3, 110–116 (1997). https://doi.org/10.1007/BF02375532

Download citation

Keywords

  • Catalytic Activity
  • Catalytic Rate
  • Catalyst Potential
  • Industrial Reaction
  • Electrochemical Promotion