, Volume 3, Issue 1–2, pp 56–66 | Cite as

Application of in-situ temperature programmed techniques to catalytic oxidation reactions on conducting mixed oxides

  • A. Ovenston
  • J. R. Walls


A test bed for development of catalysts in a temperature programmed reactor is described. The effluent species are monitored in real time. Such data are collected into spreadsheet arrays which can be interrogated to yield kinetic data. An appropriate reactor design can therefore proceed directly from laboratory measurements to generate whole plant simulation analysis and commercial evaluation. For the oxidative coupling of methane, the hydrocarbon to oxygen ratio in the feed is of particular importance since the state of oxidation plays a significant role in determining the selectivity of the catalyst to the optimum product distribution. Homogeneous gas phase reactions may also occur at high temperatures, hence the reactor volume both upstream and downstream of the catalyst must also be considered.

The stability of the catalyst under reactor conditions can be further assessed by following temperature programmed, thermal gravimetric and differential thermal analyses in diverse oxidizing, reducing or reaction atmospheres. Temperature programmed AC electrical measurements also give further insight into changes in the catalyst both at the surface and in the bulk as chemical reactions proceed. Examples of these techniques on a variety of mixed oxides such as Li-Ni-Co-O, La-Sr-Co-Fe-O and K-β′' alumina are presented.


Differential Thermal Analysis Mixed Oxide Catalytic Oxidation Product Distribution Simulation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Haber, “Mechanism of Heterogeneous Catalytic Oxidation” in Catalytic Oxidation, Principles and Applications, ed. R.A. Sheldon and R.A van Santen, 1995, World Scientific, Singapore, p 17.Google Scholar
  2. [2]
    J. Haber, ACS Symp. Ser.638, 20 (1996).Google Scholar
  3. [3]
    S.T. Oyama, ACS Symp. Ser.638, 2 (1996).Google Scholar
  4. [4]
    B.W. Wojciechowski, Catal. Today36, 167 (1997).CrossRefGoogle Scholar
  5. [5]
    N.M. Rice and B.W. Wojciechowski, Catal. Today36, 191 (1997).CrossRefGoogle Scholar
  6. [6]
    S.P. Asprey, N.M. Rice and B.W. Wojciechowski, Catal. Today36, 209 (1997).CrossRefGoogle Scholar
  7. [7]
    Z. Zhang, X.E. Verykios and M. Baerns, Catal. Rev.-Sc. Eng.36, 507 (1994).Google Scholar
  8. [8]
    A. Ovenston, D. Qin and J.R. Walls, Ionics2, 123 (1996).CrossRefGoogle Scholar
  9. [9]
    A.M. Efstathiou and X.E. Verykios, Appl. Catal. A: Gen151, 109 (1997).CrossRefGoogle Scholar
  10. [10]
    Y. Schuurman and C. Mirodatos, Appl. Catal. A: Gen151, 305 (1997).CrossRefGoogle Scholar
  11. [11]
    J-L. Dubois and C. J. Cameron, Applied Catal.67, 49 (1990).Google Scholar
  12. [12]
    D. Qin, A. Ovenston, A. Villar and J.R. Walls, ACS Symp. Ser.638, 95 (1996).Google Scholar
  13. [13]
    A. Ovenston, D. Qin and J.R. Walls, J. Mater. Sci.31, 5849 (1996).CrossRefGoogle Scholar
  14. [14]
    M. Caldararu, A. Ovenston and J.R. Walls, Appl. Cat. A, 1997, in press.Google Scholar
  15. [15]
    A. Ovenston, D. Qin and J.R. Walls, J. Mater. Sci.31, 3375 (1996).CrossRefGoogle Scholar
  16. [16]
    G. Schäfer and F. Aldinger, Ceramic Forum Int.73, 109 (1996).Google Scholar
  17. [17]
    F. Martín-Jiméniz, J.M. Blasco, L.J. Alemany, M.A. Banares, M. Faraldos, M.A. Peña and J.L.G. Fierro, Catal. Lett.33, 279 (1995).Google Scholar
  18. [18]
    X. Bao, M. Muhler, R. Schlögl and G. Ertl, Catal. Lett.32, 185 (1995).Google Scholar
  19. [19]
    P. Hong, B. Ying-Li, X. Xin-Rui and Z. Kai-Ji, React. Kinet. Catal. Lett.59, 159 (1996).CrossRefGoogle Scholar
  20. [20]
    E. Ruckenstein and Y.H. Hu, Catal. Lett.35, 265 (1995).CrossRefGoogle Scholar
  21. [21]
    Y. Tong and J.H. Lunsford, J.Chem. Soc., Chem. Commun. 792 (1990).Google Scholar
  22. [22]
    A. Ovenston, D. Qin and J.R. Walls, J.Mater.Sci.30, 2496 (1995).Google Scholar
  23. [23]
    G.B. Marin, “High Temperature Oxidation Processes: Oxidative Coupling of Methane” in Catalytic Oxidation, Principles and Applications, ed. R.A. Sheldon and R.A. van Santen, 1995, World Scientific, Singapore. p 119.Google Scholar
  24. [25]
    M.P. Miguel, J. Coronas, M. Menéndez and J. Santamaria, React. Kinet. Catal. Lett.59, 277 (1996).CrossRefGoogle Scholar
  25. [26]
    Y.S. Ling and Y. Zeng, J. Catal.164, 220 (1996).Google Scholar
  26. [27]
    K. Omata, O. Yamazake, K. Tomita and K. Fujimoto, J. Chem. Soc., Chem. Commun., 1647 (1994).Google Scholar
  27. [28]
    U. Balachandran, J.T. Dusek, P.S. Maiya, B. Ma, R.L. Mieville, M.S. Kleefisch and C.A. Udovich, Catal. Today36, 265 (1997).CrossRefGoogle Scholar
  28. [29]
    J. Kiwi, K.R. Thampi and M. Grätzel, Solid State Ionics48, 123 (1991).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1997

Authors and Affiliations

  • A. Ovenston
    • 1
  • J. R. Walls
    • 1
  1. 1.Dept. of Chemical EngineeringUniv. of BradfordWest YorkshireUK

Personalised recommendations