, Volume 7, Issue 1–2, pp 72–80 | Cite as

Kinetic demixing and grain boundary conductivity of yttria-doped zirconia part I - experimental observations

  • A. Rizea
  • C. Petot
  • G. Petot-Ervas
  • M. J. Graham
  • G. I. Sproule


This work is directed towards a comprehensive study on the role of the microstructure and local chemistry of grain boundaries on the ionic conductivity of yttria (9 mol%)-stabilized zirconia and YSZ-alumina composites. It has been performed on samples prepared from two batches of YSZ powders containing ≈1.0 or 1.6 wt% SiO2. Electrical conductivity measurements show that the grain boundary conductivity (σgb) increases with the sintering temperature and the cooling rate at the end of sintering or when the amount of Si in the ceramic decreases. Alumina additions lead to a decrease in σgb of the samples containing 1.0 wt% SiO2, while σgb passes through a maximum in the highly silicon contaminated materials. These results coupled with TEM X-ray microanalysis, which have shown important gradients of the concentration ratio Al/Si in the grains, near the second phase, and in the glassy precipitates, suggest a competitive effect between the insulating alumina particles and the strong interaction of Al2O3 for SiO2, removing it from grain boundary localities. On the other hand, XPS analyses show that Si and Y segregate near the interfaces. Analysis of these results suggests a kinetic demixing process and allow us to explain the beneficial effect of a faster cooling rate at the end of sintering by the lower amount of Si rejected in grain-boundary localities.


SiO2 Zirconia Cool Rate Yttria Sinter Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.Q. Minh, Ceramic fuel cells, J. Am. Cer. Soc.76, 563 (1993).Google Scholar
  2. [2]
    Bosch, Electricité et électronique pour l‘automobile à moteur à essence (1990).Google Scholar
  3. [3]
    J.R. Macdonald, Impedance Spectroscopy, John Willey, New York (1987).Google Scholar
  4. [4]
    M. Filal, C. Petot, M. Mokchah, C. Chateau, J.L. Charpentier, Solid State Ionics80, 27 (1995).CrossRefGoogle Scholar
  5. [5]
    M. Filal, Thesis, Université Amiens (1994).Google Scholar
  6. [6]
    G. Petot-Ervas, A. Rizea, C. Petot, Ionics6, 279 (2000).Google Scholar
  7. [7]
    S.P.S. Badwal, A.E. Hughes, Proceedings of the Second International Symposium on Solid Oxide Fuel Cells, (F. Gross, P. Zegers, S.C. Singhal and O. Yamamoto, Eds.) Office for Official Publications of the European Communities, Luxembourg, 445–454 (1991).Google Scholar
  8. [8]
    M.J. Verkerk, B.J. Middelhuis and A.J. Burggraaf, Solid State Ionics6, 159 (1982).CrossRefGoogle Scholar
  9. [9]
    S.P.S. Badwall and S. Rajendran, Solid State Ionics70/71, 83 (1994).Google Scholar
  10. [10]
    M.V. Inozemtsev, M.V. Perfil′ev, Elektrokhimiya11, 1031 (1975).Google Scholar
  11. [11]
    R.C. Buchanan and D.M. Wilson, Adv. Ceram.10, 526 (1984).Google Scholar
  12. [12]
    M.J. Verkerk, A.J.A. Winnubst and A.J. Burggraaf, J. Mat. Sci.17, 3113 (1982).CrossRefGoogle Scholar
  13. [13]
    M. Gödickemeier. B. Michel; A. Orliukas, P. Bohac, K. Sasaki; L. Gauckler; H. Heinrichg, P. Schwander, G. Kostorz; H. Hotmann, O. Frei, J. Mat. Res.9, 1228 (1994).Google Scholar
  14. [14]
    C. Petot, M. Filal, A. Rizea, K.H. Westmacott, J.Y. Laval, C. Lacour, J. Eur. Cer. Soc.18, 1419 (1998).Google Scholar
  15. [15]
    E.P. Butler, J. Drennan, J. Am. Cer. Soc.65, 474 (1982).Google Scholar
  16. [16]
    S.P.S. Badwal, Solid State Ionics76, 67 (1995).CrossRefGoogle Scholar
  17. [17]
    M. Aoki, Y.M. Chiang, I. Kosaki, L.J. Lee, H. Tuller, Y. Liu, J. Am. Cer. Soc.79, 1169 (1996).Google Scholar
  18. [18]
    J. Gong, Y. Li, Z. Zhang, Z. Tang, J. Am. Cer. Soc.83, 648 (2000).Google Scholar
  19. [19]
    J.F. Shackelford, P.S. Nicholson, W.W. Smeltzer, Am. Ceram. Soc. Bull.53, 865 (1974).Google Scholar
  20. [20]
    M. Rühle, N. Clausen, A.H. Heuer, Sci. Technol. Zirconia, Adv. Ceram.12, 352 (1984).Google Scholar
  21. [21]
    S.A. Theunissen, A.J. Winnubst, A.J. Burggraaf, J. Mater. Sci.27, 5057 (1992).Google Scholar
  22. [22]
    A.E. Hugues and B.A. Sexton, J. Mat. Sci.24, 1057 (1989).Google Scholar
  23. [23]
    A. Ioffe, M.V. Inozemtsev, A.S. Lipilin, M.V. Perfilev, S.V. Karpachov, Phys. Status Solidi A30, 2657 (1975).Google Scholar
  24. [24]
    S.P.S. Badwal, J. Drenann, J. Mat. Sci.22, 3231 (1987).Google Scholar
  25. [25]
    Xin Guo, Solid State Ionics81, 235 (1995).CrossRefGoogle Scholar
  26. [26]
    S.L. Hwang, J.W. Chen, J. Am. Cer. Soc.73, 3269 (1990).Google Scholar
  27. [27]
    P. Ruello, A. Rizea, C. Petot, G. Petot-Ervas, M.J. Graham, G.I. Sproule, Ionics7, 81 (2001).Google Scholar

Copyright information

© IfI - Institute for Ionics 2001

Authors and Affiliations

  • A. Rizea
    • 1
  • C. Petot
    • 1
  • G. Petot-Ervas
    • 1
  • M. J. Graham
    • 2
  • G. I. Sproule
    • 2
  1. 1.CNRS-SPMS, Ecole Centrale de ParisGrande voie des VignesChâtenay MalabryFrance
  2. 2.Institute for Microstructural SciencesNRCOttawaCanada

Personalised recommendations