Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrochemical promotion of catalyst surfaces deposited on ionic and mixed conductors

  • 37 Accesses

  • 3 Citations

Abstract

The effect of non-Faradaic electrochemical modification of catalytic activity (NEMCA) or electrochemical promotion (EP) was investigated on Pt films deposited on Y2O3-stabilized-ZrO2 (YSZ), an O2− conductor, TiO2, a mixed conductor, and Nafion 117 solid polymer electrolyte (SPE), a H+ conductor and also on Pd films deposited on YSZ and β″-Al2O3 a Na+ conductor. Four catalytic systems were investigated, i.e. C2H6 oxidation on Pt/YSZ, C2H4 oxidation on Pd/YSZ and Pd/β″-Al2O3, C2H4 oxidation on Pt/TiO2 and H2 oxidation on Pt/Nafion 117 in contact with 0.1 M aqueous KOH solution.

In all cases pronounced and reversible non-Faradaic electrochemical modification of catalytic rates was observed with catalytic rate enhancement up to 2000% and Faradaic efficiency values up to 5000.

All reactions investigated exhibit a pronounced electrophobic behaviour which is due to the weakening of chemisorptive oxygen bond at high catalyst potentials. Ethane oxidation, however, also exhibits electrophilic behaviour at low potentials due to weakened binding of carbonaceous species on the surface.

The general features of the phenomenon are similar for all four cases presented here showing that the NEMCA effect is a general, electrochemically induced, promoting catalytic phenomenon not depending on the reaction and the type of supporting electrolyte.

This is a preview of subscription content, log in to check access.

5. References

  1. [1]

    C.G. Vayenas, S. Bebelis and S. Ladas, Nature (London),343(6259), 625 (1990).

  2. [2]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.G. Lintz, Catalysis Today, Elsevier, Amsterdam,11(3), 303–442 (1992).

  3. [3]

    I.V. Yentekakis and C.G. Vayenas, J. Catal.111, 170 (1988).

  4. [4]

    C.G. Vayenas, S. Bebelis and S. Neophytides, J. Phys. Chem.92, 5083 (1988).

  5. [5]

    S. Bebelis and C.G. Vayenas, J. Catal.118, 125 (1989).

  6. [6]

    S. Neophytides and C.G. Vayenas, J. Catal.118, 147 (1989).

  7. [7]

    C.G. Vayenas, S. Bebelis, S. Neophytides and I.V. Yentekakis, Appl. Phys.A49, 95 (1989).

  8. [8]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis, P. Tsiakaras and H. Karasali, Platinum Metals Rev.34 (3), 122 (1990).

  9. [9]

    C.G. Vayenas and S. Neophytides, J. Catal.127, 645 (1991).

  10. [10]

    C.G. Vayenas, S. Bebelis and M. Despotopoulou, J. Catal.128, 415 (1991).

  11. [11]

    S. Ladas, S. Bebelis and C.G. Vayenas, Surf. Sci.251/252, 1062 (1991).

  12. [12]

    C.G. Vayenas, S. Bebelis and C. Kyriazis, Chemtech21, 500 (1991).

  13. [13]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and S. Neophytides, Solid State Ionics53–56, 97 (1992).

  14. [14]

    S. Bebelis and C.G. Vayenas, J. Catal.138, 570, (1992);138, 588 (1992).

  15. [15]

    P. Tsiakaras and C.G. Vayenas, J. Catal.140, 53 (1993).

  16. [16]

    I.V. Yentekakis and S. Bebelis, J. Catal.137, 278 (1992).

  17. [17]

    C.A. Cavalca, G. Larsen, C.G. Vayenas and G.L. Haller, J. Phys. Chem.97, 6115 (1993).

  18. [18]

    H. Alqahtany, P. Chiang, D. Eng and M. Stoukides, Catal. Letters13, 289 (1992).

  19. [19]

    J. Pritchard, Nature (London)343, 592 (1990).

  20. [20]

    I.V. Yentekakis, G. Morggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146, 292 (1994).

  21. [21]

    T.I. Politova, V.A. Sobyanin and V.D. Belyaev, React. Kinet. Lett.41, 321 (1990).

  22. [22]

    I.V. Yentekakis and C.G. Vayenas, J. Catal.149, 238 (1994).

  23. [23]

    S. Neophytides, D. Tsiplakides, P. Stonehart, M. Jaksic and C.G. Vayenas, Nature370, 45 (1994).

  24. [24]

    T. Arakawa, A. Saito, and J. Shiokawa, Chem. Phys. Lett.94, 250 (1983); Appl. Surf. Sci.16, 365 (1983).

  25. [25]

    U. Vöhrer, Ph.D. Thesis, Universität Tübingen, 1992.

  26. [26]

    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.97, 8845 (1993).

  27. [27]

    Y. Jiang, A. Kaloyannis and C.G. Vayenas, Electrochimica Acta38, 17, 2533–2539 (1993).

  28. [28]

    H. Takenaka and E. Torikai, Kokai Tokkyo Koho (Japan Patent), 55-38934 (1980).

  29. [29]

    K. Otsuka and I. Yamanaka, Electrochimica Acta,35, 2, 319–322 (1990).

  30. [30]

    J.O.'M. Bockris and A.K.N. Reddy in “Modern Electrochemistry”, Vol. 2, Plenum Press, New York (1970).

  31. [31]

    B.E. Conway, in Electrodes of Coductive Metallic Oxides (ed. Trasatti, S.) Ch. 9 (Elsevier, Amsterdam 1981).

  32. [32]

    J.O.M'. Bockris and A.K.N. Reddy, in Modern Electrochemistry (Plenum, New York, 1973).

  33. [33]

    J.O.M'. Bockris and S.U.M. Khan, in Surface Electrochemistry, a Molecular Level Approach Ch. 3 (Plenum, New York, 1993).

  34. [34]

    B.E. Conway and B.V. Tilak, Adv. Catal.38, 1–123 (1992).

  35. [35]

    C. Pliangos, I.V. Yentekakis, S. Ladas and C.G. Vayenas, J. Catalysis, in press (1995)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaloyannis, A.C., Pliangos, C.A., Tsiplakides, D.T. et al. Electrochemical promotion of catalyst surfaces deposited on ionic and mixed conductors. Ionics 1, 414–420 (1995). https://doi.org/10.1007/BF02375285

Download citation

Keywords

  • TiO2
  • C2H4 Oxidation
  • Solid Polymer Electrolyte
  • Catalytic Rate
  • Chemisorptive Oxygen