Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrochemical promotion of environmentally important catalytic reactions

Abstract

The performance of conventional heterogeneous metal catalysts may be enhanced by the addition of so-called promoter species that are used to modify the intrinsic metal surface chemistry with respect to activity and/or selectivity. Electrochemical methods provide an alternative, radically different and uniquely efficacious method of catalyst promotion. Substantial and reversible changes in catalyst perfomance can be induced by back-spillover ions pumped from a solid electrolyte to the surface of a catalytically active electrode: one hasin situ control of the working catalyst.

Studies of the electrochemical promotion of NO reduction over Pt films supported on β″-alumina (a sodium ion conductor) demonstrate that major enhancements in activity are possible when Na is pumped to the catalyst surface. We have examined the NO+CO reaction and the reaction of NO with propene. Both reactions are relevant to control of automotive and other emissions, and both exhibit strong electrochemical promotion. By simulating lean-burn engine conditions, we have also demonstrated that EP of a Pt catalyst very substantially enhances the ability of NO to oxidise propene in an oxygen-rich atmosphere. Reaction kinetic data obtained as a function of catalyst potential, temperature and gas composition indicate that Na increases the strength of NO chemisorption relative to CO or propene, a process that is accompanied by weakening of the N-O bond, thus facilitating NO dissociation, which is the critical reaction-initiating step. XP spectroscopy under the appropriate conditions of temperature and catalyst potential confirms that the mode of operation of the elctrochemically promoted Pt film does indeed involve reversible pumping of Na to or from the solid electrolyte.

This is a preview of subscription content, log in to check access.

7. References

  1. [1]

    C.G. Vayenas, S. Bebelis, I.V. Yentekakis, and H.G. Lintz, in “Catalysis Today”, Vol. 11, No 3, p. 303. Elsevier, Amsterdam, 1992.

  2. [2]

    S.G. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature370, 45 (1994).

  3. [3]

    J. A. Rodriguez and D. W. Goodman, Surf. Sci. Reports14, 1 (1991).

  4. [4]

    Y. O. Park, W. F. Banholzer and R. I. Masel, Surf. Sci.155, 341 (1985).

  5. [5]

    W. F. Banholzer, R. E. Parise and R. I. Masel, Surf. Sci.155, 653 (1985).

  6. [6]

    D'Arcy Lorimer and A. T. Bell, J. Catal.59, 223 (1979).

  7. [7]

    B. A. Banse, D. T. Wickham and B. E. Koel, J. Catal.119, 238 (1989).

  8. [8]

    R. L. Klein, S. Schwartz and L. D. Schimdt, J. Phys. Chem.89, 4908 (1985).

  9. [9]

    D. N. Belton and S. J. Scmieg J. Catal138, 70 (1992).

  10. [10]

    D. N. Belton and S. J. Scmieg J. Catal.144, 9 (1993).

  11. [11]

    S. E. Oh., G. B. Fischer, J. E. Carpenter and D. W. Goodman J. Catal.100, 360 (1986).

  12. [12]

    A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno and H. Ohuchi, Appl.Catal.B, Environmental,2, 71 (1993).

  13. [13]

    J.R. Hardee and J.W. Hightower, J.Catal.86, 137 (1984).

  14. [14]

    S. Naito and M. Tanimoto, Chem. Lett.1935 (1993).

  15. [15]

    R. Burch, P.J. Millington, A.P. Walker Appl. Catal. B: Environmental.4, 65. (1994)

  16. [16]

    T. Miyadera and K. Yoshida, Chem. Lett. (1993) p.1483.

  17. [17]

    H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, M. Tabata, Appl. Catal.75, L1 (1991).

  18. [18]

    C.G. Vayenas, S. Bebelis, S. Neophytides and I.V. Yentekakis, Appl. Phys.A49, 95 (1989).

  19. [19]

    I.V. Yentekakis, S. Neophytides and C.G. Vayenas, J. Catal.111, 152 (1988).

  20. [20]

    I.V. Yentekakis and S. Bebelis, J. Catal.137, 278 (1992)

  21. [21]

    C.G. Vayenas, S. Bebelis and M. Despotopoulou, J. Catal. 128, 415 (1991).

  22. [22]

    I.V. Yentekakis, G.D. Moggridge, G.D. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146 (1994) 292.

  23. [23]

    N.D. Lang, S. Holloway and J.K. Norskov, Surface Science150, 24 (1985).

  24. [24]

    I. R. Harkness and R.M. Lambert,in preparation.

  25. [25]

    G. Pirug and H.P. Bonzel, J. Catal.50, 64 (1977).

  26. [26]

    I. R. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).

  27. [27]

    N.R. Avery, N.S. Sheppard, Proc. Roy. Soc. Lond.A405, 1 (1986).

  28. [28]

    R.J. Koestner, J.C. Frost, P.C. Stair, M.A. VanHove, G.A. Somorjai, Surf. Sci.116, 85 (1982).

  29. [29]

    M. Salmeron, G.A. Somorjai, J. Phys. Chem.86, 341 (1982).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lambert, R.M., Tikhov, M., Palermo, A. et al. Electrochemical promotion of environmentally important catalytic reactions. Ionics 1, 366–376 (1995). https://doi.org/10.1007/BF02375278

Download citation

Keywords

  • Propene
  • Chemisorption
  • Solid Electrolyte
  • Active Electrode
  • Engine Condition