Ionics

, Volume 1, Issue 5–6, pp 366–376 | Cite as

Electrochemical promotion of environmentally important catalytic reactions

  • R. M. Lambert
  • M. Tikhov
  • A. Palermo
  • I. V. Yentekakis
  • C. G. Vayenas
Article

Abstract

The performance of conventional heterogeneous metal catalysts may be enhanced by the addition of so-called promoter species that are used to modify the intrinsic metal surface chemistry with respect to activity and/or selectivity. Electrochemical methods provide an alternative, radically different and uniquely efficacious method of catalyst promotion. Substantial and reversible changes in catalyst perfomance can be induced by back-spillover ions pumped from a solid electrolyte to the surface of a catalytically active electrode: one hasin situ control of the working catalyst.

Studies of the electrochemical promotion of NO reduction over Pt films supported on β″-alumina (a sodium ion conductor) demonstrate that major enhancements in activity are possible when Na is pumped to the catalyst surface. We have examined the NO+CO reaction and the reaction of NO with propene. Both reactions are relevant to control of automotive and other emissions, and both exhibit strong electrochemical promotion. By simulating lean-burn engine conditions, we have also demonstrated that EP of a Pt catalyst very substantially enhances the ability of NO to oxidise propene in an oxygen-rich atmosphere. Reaction kinetic data obtained as a function of catalyst potential, temperature and gas composition indicate that Na increases the strength of NO chemisorption relative to CO or propene, a process that is accompanied by weakening of the N-O bond, thus facilitating NO dissociation, which is the critical reaction-initiating step. XP spectroscopy under the appropriate conditions of temperature and catalyst potential confirms that the mode of operation of the elctrochemically promoted Pt film does indeed involve reversible pumping of Na to or from the solid electrolyte.

Keywords

Propene Chemisorption Solid Electrolyte Active Electrode Engine Condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [1]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis, and H.G. Lintz, in “Catalysis Today”, Vol. 11, No 3, p. 303. Elsevier, Amsterdam, 1992.Google Scholar
  2. [2]
    S.G. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature370, 45 (1994).CrossRefGoogle Scholar
  3. [3]
    J. A. Rodriguez and D. W. Goodman, Surf. Sci. Reports14, 1 (1991).Google Scholar
  4. [4]
    Y. O. Park, W. F. Banholzer and R. I. Masel, Surf. Sci.155, 341 (1985).CrossRefGoogle Scholar
  5. [5]
    W. F. Banholzer, R. E. Parise and R. I. Masel, Surf. Sci.155, 653 (1985).CrossRefGoogle Scholar
  6. [6]
    D'Arcy Lorimer and A. T. Bell, J. Catal.59, 223 (1979).CrossRefGoogle Scholar
  7. [7]
    B. A. Banse, D. T. Wickham and B. E. Koel, J. Catal.119, 238 (1989).CrossRefGoogle Scholar
  8. [8]
    R. L. Klein, S. Schwartz and L. D. Schimdt, J. Phys. Chem.89, 4908 (1985).CrossRefGoogle Scholar
  9. [9]
    D. N. Belton and S. J. Scmieg J. Catal138, 70 (1992).CrossRefGoogle Scholar
  10. [10]
    D. N. Belton and S. J. Scmieg J. Catal.144, 9 (1993).Google Scholar
  11. [11]
    S. E. Oh., G. B. Fischer, J. E. Carpenter and D. W. Goodman J. Catal.100, 360 (1986).CrossRefGoogle Scholar
  12. [12]
    A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno and H. Ohuchi, Appl.Catal.B, Environmental,2, 71 (1993).CrossRefGoogle Scholar
  13. [13]
    J.R. Hardee and J.W. Hightower, J.Catal.86, 137 (1984).CrossRefGoogle Scholar
  14. [14]
    S. Naito and M. Tanimoto, Chem. Lett.1935 (1993).Google Scholar
  15. [15]
    R. Burch, P.J. Millington, A.P. Walker Appl. Catal. B: Environmental.4, 65. (1994)CrossRefGoogle Scholar
  16. [16]
    T. Miyadera and K. Yoshida, Chem. Lett. (1993) p.1483.Google Scholar
  17. [17]
    H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, M. Tabata, Appl. Catal.75, L1 (1991).Google Scholar
  18. [18]
    C.G. Vayenas, S. Bebelis, S. Neophytides and I.V. Yentekakis, Appl. Phys.A49, 95 (1989).Google Scholar
  19. [19]
    I.V. Yentekakis, S. Neophytides and C.G. Vayenas, J. Catal.111, 152 (1988).Google Scholar
  20. [20]
    I.V. Yentekakis and S. Bebelis, J. Catal.137, 278 (1992)CrossRefGoogle Scholar
  21. [21]
    C.G. Vayenas, S. Bebelis and M. Despotopoulou, J. Catal. 128, 415 (1991).CrossRefGoogle Scholar
  22. [22]
    I.V. Yentekakis, G.D. Moggridge, G.D. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146 (1994) 292.CrossRefGoogle Scholar
  23. [23]
    N.D. Lang, S. Holloway and J.K. Norskov, Surface Science150, 24 (1985).CrossRefGoogle Scholar
  24. [24]
    I. R. Harkness and R.M. Lambert,in preparation.Google Scholar
  25. [25]
    G. Pirug and H.P. Bonzel, J. Catal.50, 64 (1977).CrossRefGoogle Scholar
  26. [26]
    I. R. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).CrossRefGoogle Scholar
  27. [27]
    N.R. Avery, N.S. Sheppard, Proc. Roy. Soc. Lond.A405, 1 (1986).Google Scholar
  28. [28]
    R.J. Koestner, J.C. Frost, P.C. Stair, M.A. VanHove, G.A. Somorjai, Surf. Sci.116, 85 (1982).CrossRefGoogle Scholar
  29. [29]
    M. Salmeron, G.A. Somorjai, J. Phys. Chem.86, 341 (1982).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 1995

Authors and Affiliations

  • R. M. Lambert
    • 1
  • M. Tikhov
    • 1
  • A. Palermo
    • 1
    • 2
  • I. V. Yentekakis
    • 1
  • C. G. Vayenas
    • 1
    • 3
  1. 1.Chemistry DepartmentCambridge UniversityCambridgeEngland
  2. 2.Inst. of Materials Sci. and TechnologyUniv. of Mar del PlataMar del PlataArgentina
  3. 3.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations