Skip to main content
Log in

Phase method for monitoring the permittivity of different media

  • Radio Engineering Measurements
  • Published:
Measurement Techniques Aims and scope

Abstract

A nondestructive method was developed for rapidly monitoring the permittivities of solid, liquid, and gaseous materials, based on measuring the phase difference of signals passing along two transmission lines and comparing the parameters of the “standard” and “investigated” media. The design of a volume-integral microwave transducer is considered together with its operating principle and its range of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Gvozdev, E. D. Pozhidaev, and V. S. Saenko, Elektron. Promst., No. 2, 80 (1982).

    Google Scholar 

  2. N. P. Bogorodski<i, V. V. Pasynkov, and B. M. Tareev,Materials for Electrical Engineering [in Russian], Gosénergoizdat, Moscow (1963).

    Google Scholar 

  3. K. A. Andrianova,Handbook of Materials for Electrical Engineering, Vol. 1, Parts 1 and 2 [in Russian], Gosénergoizdat, Moscow (1958).

    Google Scholar 

  4. V. P. Leont'eva,Nonmetallic Aviation Materials, Part 1, Sergo Ordzhonikidze Aviation Institute, Moscow (1965).

    Google Scholar 

  5. E. B. Trostyanskaya, B. A. Kalachev, and S. I. Sil'vestrovich (eds.),New Materials and Techniques [in Russian], Gostoptekhizdat, Moscow (1962).

    Google Scholar 

  6. B. I. Sazhin,Electrical Conductivity of Polymers [in Russian], Khimiya, Moscow (1965).

    Google Scholar 

  7. G. Z. Khusannova, in:Dielectrics in an Electric Field (Kh. Yanag, ed.), [Russian translation from Japanese], Metallurgiya, Moscow (1986).

    Google Scholar 

  8. E. V. Vorob'ev, V. F. Mikhaîlov, and A. A. Kharitonov,Microwave Dielectrics Under High Temperature Conditions [in Russian], Sovet-skoe Radio, Moscow (1977).

    Google Scholar 

  9. Ya. A. Shneîderman, Zarubezh. Radioelektron., No. 2, 49 (1971).

    Google Scholar 

  10. A. R. von Hippel (ed.),Dielectric Materials and Applications, MIT Technology Press, Cambridge, MA; Wiley, New York (1954).

    Google Scholar 

  11. A. A. Brandt,Investigation of Dielectrics at Microwave Frequencies [in Russian], GIFML, Moscow (1963).

    Google Scholar 

  12. S. V. Bogdanov, Prib. Tekh. Éksp., No. 3, 90 (1957).

    Google Scholar 

  13. K. A. Vodop'yanov, Zh. Tekh. Fiz.,24, No. 1, 25 (1954).

    Google Scholar 

  14. G. I. Skanavi and A. N. Gubkin, Zh. Eksp. Teor. Fiz.,27, No. 6, 742 (1954).

    Google Scholar 

  15. V. I. Medvedev, in:Physics of Dielectrics [in Russian], Academy of Sciences of the USSR, Moscow (1958), p. 158.

    Google Scholar 

  16. É. M. Fradkina, in:Physics of Dielectrics [in Russian], Academy of Sciences of the USSR, Moscow (1958), p. 153.

    Google Scholar 

  17. A. R. von Hippel,Dielectrics and Waves, Wiley, New York (1954).

    Google Scholar 

  18. V. I. Gvozdev and E. I. Nefedov,Three Dimensional Integrated Circuits for Microwaves [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  19. V. I. Gvozdev, G. A. Kuzaev, E. I. Nefedov, and A. A. Yashin, Usp. Fiz. Nauk,162, No. 3, 129 (1992).

    Google Scholar 

  20. G. A. De'nega and A. N. Goncharenko, Voprosy Radioelektron. Ser. VI, No. 3, 21 (1965).

    Google Scholar 

  21. V. A. Aksenov, Voprosy Radioelektron. Ser. XII, No. 2, 32 (1965).

    Google Scholar 

  22. T. E. Talpey, Onde Elect.,33, No. 319, 561 (1953).

    Google Scholar 

  23. M. P. Bachynski, Can. J. Phys.,36, No. 4, 456 (1958).

    ADS  MATH  Google Scholar 

  24. I. E. Tamm,Fundamentals of the Theory of Electricity [in Russian], Gostekhizdat, Moscow (1957).

    Google Scholar 

  25. F. E. Terman and J. M. Pettit,Electronic Measurements, McGraw-Hill, New York (1955).

    Google Scholar 

  26. V. S. Saenko, V. I. Gvozdev, and E. D. Pozhidaev, Elektron. Tekh. Elektron., SVCh, No. 6, 28 (1980).

    Google Scholar 

  27. V. F. Batalov et al., Izobret., No. 40 (1993), Patent No. 2,003,992 Russian Federation.

  28. É. I. Batygina et al., Obzory Elektron. Tekh. Elektron. SVCh, No. 4, 34 (1980).

    Google Scholar 

  29. V. A. Iovdal'skiî, Elektron. Tekh. SVCh Tekh., Nos. 9-10, 42 (1992).

    Google Scholar 

  30. V. A. Iovdal'skiî, Elektron. Tekh. SVCh Tekh., No. 2, 35 (1993).

    Google Scholar 

  31. V. A. Iovdal'skiî, Elektron. Tekh. SVCh Tekh., No. 3, 34 (1993).

    Google Scholar 

  32. V. A. Iovdal'skiî, B. V. Markin, and V. N. Rybkin, Elektron. Tekh. SVCh Tekh., Nos. 5-6, 53 (1990).

    Google Scholar 

  33. V. A. Iovdal'skiî and V. N. Rybkin, Elektron. Tekh. SVCh Tekh., No. 4, 25 (1993).

    Google Scholar 

  34. US Patent No. 273,272 (1981).

  35. M. V. Pankov, M. V. Klassen-Heklyudova, and V. G. Govorkov, Byull. Izobret., No. 16 (1976), Authors' Certificate No. 182,705 USSR.

  36. V. N. Batyugin et al., Byull. Izobret., No. 18 (1976), Authors' Certificate No. 524,769 USSR.

Download references

Authors

Additional information

Translated from Izmeritel'naya Tekhnika, No. 4, pp. 53–55, April, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gvozdev, V.N., Iovdal'ki<i, V.A. & Linev, A.A. Phase method for monitoring the permittivity of different media. Meas Tech 39, 432–437 (1996). https://doi.org/10.1007/BF02374547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02374547

Keywords

Navigation