Measurement Techniques

, Volume 39, Issue 4, pp 410–418 | Cite as

Determining flow rate in discharge pipes by measuring velocity at one point of the outlet section of a convergent duct

  • B. M. Levin
Mechanical Measurements
  • 53 Downloads

Abstract

Results are presented from a study of a method for determining flow rate in discharge pipes by measuring velocity at one point of the outlet section of a convergent duct that smoothly connects two pipes of different diameters. A metrological analysis, of the measurement method is presented.

Keywords

Physical Chemistry Analytical Chemistry Measurement Method Outlet Section Discharge Pipe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. P. Kremlevskii, Volume and Mass Flowmeters. Handbook [in Russian], Mashinostroenie, Leningrad (1989).Google Scholar
  2. 2.
    GOST 8.438-81. GSI. Water Flow Rate in Discharge Pipes. Method of Making Measurements by the “Area —Velocity” Method.Google Scholar
  3. 3.
    B. M. Levin et al., Gidrotekh. Stroit., No. 6, 12 (1984).MATHGoogle Scholar
  4. 4.
    GOST 8.361-79. GSI. Rate of Flow of Liquid and Gas. Method of Making measurements on the Basis of Velocity at One Point of the Cross Section of a Pipe.Google Scholar
  5. 5.
    F. A. Shevelev, Investigation of the Main Hydraulic Principles of Turbulent Pipe Flow [in Russian], Stroizdat, Moscow (1953).Google Scholar
  6. 6.
    A. D. Al'tshul', Hydraulic Resistances [in Russian], Nedra, Moscow (1970).Google Scholar
  7. 7.
    G. V. Zheleznyakov, Theory of Hydrometry [in Russian], Gidrometizdat, Leningrad (1976).Google Scholar
  8. 8.
    ISO 5167. Measurement of Fluid by Means of Orifice Plates, Nozzles, and Venturi Tubes Inserted in Circular Cross-Section Conduits Running Full. May, 1979 [E].Google Scholar
  9. 9.
    B. M. Levin et al., Izmer. Tekh., No. 4, 32 (1991).Google Scholar
  10. 10.
    G. Witoschynsky, Über Strahlerweiterung Strahlablenkung, Springer, Berlin (1924).Google Scholar
  11. 11.
    I. Nikuradse, Forschungsarbeiten des VDJ, No. 289 (1929)Google Scholar
  12. 12.
    V. A. Kuz'min, “Improvement in instruments for measuring the rate of flow of liquid, gas, and vapor,” Materials of a Scientific-Technical Conference. LDNTP (Leningrad House of Scientific and Technical Propaganda), St. Petersburg (1992), p. 27.Google Scholar
  13. 13.
    Kuz'min et al., Izmer. Tekh., No. 3, 32 (1993).Google Scholar
  14. 14.
    P. P. Kremlevskii, V. A. Kuz'min, et al., “Improvement in instruments for measuring the rate of flow of liquid, gas, and vapor,” Materials of a Scientific-Technical Conference. MTsENT, St. Petersburg (1994), p. 47.Google Scholar
  15. 15.
    V. A. Belykh et al., Izv. Vses. Nauchno-Issled. Inst. Gidrotekh.,168, 99 (1983).Google Scholar
  16. 16.
    J. Laufer, NACA, Rep. 1174 (1954), p. 1.Google Scholar
  17. 17.
    E. G. Zvenigorodskii and Yu. D. Kaminskii, Izmer. Tekh. No. 2, 27 (1986).Google Scholar
  18. 18.
    E. G. Zvenigorodskii, Yu. D. Kaminskii, et al., Prib. Sist. Upr., No. 10, 35 (1989).Google Scholar
  19. 19.
    E. G. Zvenigorodskii, Yu. D. Kaminskii, et al., “Improvement in instruments for measuring the rate of flow of liquid, gas, and vapor,” Materials of a Scientific-Technical Conference. LDNTP, St. Petersburg (1992), p. 70.Google Scholar
  20. 20.
    D. Dopheide and G. Taux, Physikalish-Technische Bundesanstalt (PTB). Braunschweig, FRG (1982), p. 209.Google Scholar
  21. 21.
    D. Dopheide, V. Strunk, and E. Krey, Physikalish-Technische Bundesanstalt. Germany (1994), p. 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • B. M. Levin

There are no affiliations available

Personalised recommendations