Skip to main content

Humidity sensing under aggressive conditions using nafion conductors

Abstract

A sensor capable of detecting moisture in a chlorine-air environment has been assembled from Nafion and platinum. Nafion acts as the solid electrolyte while platinum chemically deposited on the Nafion is the electrode material. Thermogravimetric analysis suggests that Nafion is stable up to 473 K. A Frequency Response Analyser (FRA) was used to calibrate the sensor in terms of impedance as a function of relative humidity. The frequency range was 10−2 to 107 Hz and an amplitude of 100 mV was applied. Impedance measurements show that only a bulk process occurs and when relative humidity is high, diffusion of moisture into and out of the platinum/Nafion composite becomes significant. This is reflected in the form of a spike at about 45° to the real axis. The sensor detects chlorine in air without loosing its chemical and physical stability. Conductivity increases as a function of temperature and reaches its peak at 433 K. The response time of the sensor is governed by temperature, thickness of the Nafion film and the amount of platinum on the surface. In practice the sensor can be operated with a frequency controller.

This is a preview of subscription content, access via your institution.

6. References

  1. C. Tsonos, L. Apejis and P. Pissis, J. Materials Science33, 2221 (1998).

    Article  CAS  Google Scholar 

  2. M. Cappadonia et al., Solid State Ionics77, 65 (1995).

    Article  CAS  Google Scholar 

  3. A.J. Appleby and E.B. Yeager, Energy11, 137 (1986).

    CAS  Google Scholar 

  4. R.S. Yeo, Perflourinated Ionomer Membranes, ACS Symp. Series 180, Washington D.C, (A. Heisenberg and H.L. Yeager, Eds.), 1982, pp 453 – 474.

  5. D.R. Morris, R.V. Kumar and D.J. Fray, Ironmaking and Steelmaking16, 429 (1989).

    CAS  Google Scholar 

  6. D.J. Fray, “Gas Sensors — solid state” in Concise Encyclopaedia of Material characterisation, (R.W. Cahn and E. Lifshin, Eds.) Pergamon Press, 1993, p. 175.

  7. T.D. Gierke, The Electrochemical Society Extended Abstracts, Vol. 77–2, Atlanta GA 1977, Abstr. 438, p 1139.

    Google Scholar 

  8. P.W.T. Lu and S. Srinivasan, J. Appl. Electrochem9, 269 (1979).

    Article  CAS  Google Scholar 

  9. S. Kirkpatrick, Phys. Rev. Lett.36, 69 (1976).

    Article  Google Scholar 

  10. J.P. Straley, Phys. Rev. C9, 783 (1976).

    Google Scholar 

  11. S. Kirkpatrick, Solid State Commun.12, 1279 (1973).

    Article  CAS  Google Scholar 

  12. I. Webman, J. Jortner and M.H. Cohen, Phys. Rev. B16, 2593 (1977).

    Google Scholar 

  13. M.H. Cohen, J. Jortner and I. Webman, Phys. Rev. B17, 4555 (1978).

    Article  CAS  Google Scholar 

  14. G. Pourcelly et al., J. Electroanal. Chem.305, 97 (1991).

    Article  CAS  Google Scholar 

  15. C. Gavach et al., Membrane Science45, 37 (1989).

    CAS  Google Scholar 

  16. A. Lindheimer et al., J. Electroanal. Chem.216, 71 (1987).

    Article  CAS  Google Scholar 

  17. P. Millet et al., J. Electrochem. Soc.140, 1373 (1993).

    CAS  Google Scholar 

  18. R.S. Chen et al., J. Electrochem. Soc.140, 889 (1993).

    CAS  Google Scholar 

  19. M.C. Wintersgill and J.J. Fontanella, Electrochimica Acta43, 1533 (1998).

    Article  CAS  Google Scholar 

  20. F. Opekar and D. Svozil, J. Electroanal. Chem.385, 269 (1995).

    Article  CAS  Google Scholar 

  21. D.R. Morris and X. Sun, J. Appl. Polymer Sci.50, 1445 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tailoka, F., Fray, D. & Kumar, R. Humidity sensing under aggressive conditions using nafion conductors. Ionics 6, 383–388 (2000). https://doi.org/10.1007/BF02374157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02374157

Keywords

  • Physical Chemistry
  • Analytical Chemistry
  • Platinum
  • Relative Humidity
  • Response Time