Skip to main content

Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes


A few principles relative to the presentation and use of nitrogen stable isotopic data are briefly reviewed. Some classical relationships between the isotope composition of a substrate undergoing a single-step unidirectional reaction, are introduced.

They are illustrated through controlled experiments on denitrification in a soil, and through nitrification by pure cultures ofNitrosomonas europaea. In the latter case, the isotope fractionation is calculated from the isotopic composition of the residual substrate, then of the product and the result is shown to be statistically the same for the two procedures.

The isotopic enrichment factor for denitrification is −29.4±2.4‰ at 20°C, and −24.6±0.9‰ at 30°C; for nitrification this factor is −34.7±2.5‰ under the experimental conditions employed.

This is a preview of subscription content, access via your institution.


  1. 1

    Barnes, H. and Folkard, A. R. 1951 The determination of nitrite. Analyst76, 599–603.

    CAS  Article  Google Scholar 

  2. 2

    Bigeleisen, J. 1952 The effect of isotopic substitution on the rates of chemical reactions. J. Chem. Phys.20, 823–828.

    Article  Google Scholar 

  3. 3

    Blackmer, A. M. and Bremner, J. M. 1977 Nitrogen isotope discrimination in denitrification of nitrate in soils. Soil Biol. Biochem.9, 73–77.

    CAS  Article  Google Scholar 

  4. 4

    Chien, S. H., Shearer, G. and Kohl, D. H. 1977 The nitrogen isotope effect associated with nitrate and nitrite łoss from waterlogged soils. Soil Sci. Soc. Am. J.41, 63–69.

    CAS  Article  Google Scholar 

  5. 5

    Delwiche, C. C. and Steyn, P. L. 1970 Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Technol.4, 929–935.

    CAS  Article  Google Scholar 

  6. 6

    Domenach, A. M. and Chalamet, A. 1977 Rapports isotopiques naturels de l’azote. I.-Premiers résultats: sols de Dombes. Rev. Ecol. Biol. Sol14, 279–287.

    CAS  Google Scholar 

  7. 7

    Federova, R. I., Milekhina, E. I. and Il’yuklina, N. I. 1973 Possibility of using the ‘gas-exchange’ method to detect extraterrestrial life: identification of nitrogen fixing organisms. Akad. Nauk. SSR Izvestia Ser. Biol.6, 797–806.

    Google Scholar 

  8. 8

    Freyer, H. D. and Aly, A. I. M. 197515N studies on identifying fertilizer excess in environmental systems. IAEA Isotope ratios as pollutant source and behaviour indicators. SM191/9, 21–33.

    Google Scholar 

  9. 9

    Friedman, I. and O’Neil, J. 1977 Data of Geochemistry (Sixth edition). Chapter KK. Compilation of stable isotope fractionation factors of geochemical interest. Geological Survey professional paper 440 KK. US Government Printing Office, Washington.

    Google Scholar 

  10. 10

    Junc, G. A. and Svec, H. J. 1958 Nitrogen isotope abundance measurements. US atomic energy Commission. Office of technical information ISC1138.

  11. 11

    Karamanos, R. E. and Rennie, D. A. 1980 Changes in natural15N abundance associated with pedogenetic processes in soil. I Changes associated with saline seeps. Can. J. Soil Sci.60, 337–344.

    Article  Google Scholar 

  12. 12

    Krouse, H. R. 1980 Sulphur isotopes in our environment.In Handbook of Environmental Isotope Geochemistry. Eds P. Fritz and J. Ch. Fontes. pp 435–471, Chapter 11, Elsevier.

  13. 13

    Lewis, R. F. and Pramer, D. 1958 Isolation of Nitrosomonas in pure culture. J. Bacteriol.76, 524–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Mariotti, A. and Letolle, R. 1978 Analyse isotopique de l’azote au niveau des abondances naturelles. Analysis6, 421–425.

    CAS  Google Scholar 

  15. 15

    Mariotti, A., Mariotti, F., Amarger, N., Pizelle, G., Ngambi, J. M., Champigny, M. L. et Moyse, A. 1980 Fractionnements isotopiques de l’azote lors des processus d’absorption des nitrates et de fixation de l’azote atmosphérique par les plantes. Physiol. Vég.18, 163–181.

    CAS  Google Scholar 

  16. 16

    McCready, R. G. L., Laishley, E. J. and Krouse, H. R. 1976 Biogeochemical implications of inverse sulfur isotope effects during reduction of sulfur compounds byClostridium pasteurianum. Geoch. Cosmoch. Acta40, 979–981.

    CAS  Article  Google Scholar 

  17. 17

    McKinney, C. R., McCrea, J. M., Epstein, S., Allen, H. A. and Urey, H. C. 1950 Improvements in mass spectrometers for the measurements of small differences in isotope abundance ratio. Rev. Sci. Instr.21, 724–730.

    CAS  Article  Google Scholar 

  18. 18

    Nier, A. O. 1947 A mass spectrometer for isotope and gas analysis. Rev. Sci. Instr.18, 398–411.

    CAS  Article  Google Scholar 

  19. 19

    Rees, C. E. 1973 A steady state model for sulphur isotope fractionation in bacterial reduction processes. Geoch. Cosmoch. Acta37, 1141–1162.

    CAS  Article  Google Scholar 

  20. 20

    Rennie, D. A., Paul, E. A. and Johns, L. E. 1976 Natural nitrogen-15 abundance of soil and plant samples. Can. J. Soil Sci.56, 43–50.

    CAS  Article  Google Scholar 

  21. 21

    Shearer, G., Duffy, J., Kohl, D. H. and Commoner, B. 1974 A steady state model of isotopic fractionation accompanying nitrogen transformations in soils. Soil Sci. Soc. Am. Proc.38, 315–322.

    CAS  Article  Google Scholar 

  22. 22

    Tong, J. Y. and Yankwich, P. E. 1957 Calculation of experimental isotope effects for pseudo first-order irreversible reactions. J. Phys. Chem.61, 540–543.

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mariotti, A., Germon, J.C., Hubert, P. et al. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant Soil 62, 413–430 (1981).

Download citation

Key Words

  • Denitrification
  • Nitrification
  • Nitrogen isotope fractionation
  • Nitrogen-15 natural abundance