, Volume 6, Issue 3–4, pp 288–293 | Cite as

Effect of ceramic oxide on PVC-PMMA hybrid polymer electrolytes

  • S. Rajendran
  • T. Uma


The preparation and characterization of PVC-PMMA-LiBF4/LiAsF6-DBP composite polymer electrolytes for different concentrations of ZrO2 have been investigated. FTIR studies indicate complex formation between the polymers, salt and plasticizer. The electrical conductivity values measured by ac impedance spectroscopy were found to depend upon the ZrO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and the results are discussed.


Oxide Polymer Spectroscopy Analytical Chemistry Electrical Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    C.C. Liang, J. Electrochem. Soc.120, 1289 (1973).Google Scholar
  2. [2]
    J. Maier, in: Superionic Solids and Solid Electrolytes, (A.L. Lasker and S. Chandra, Eds.) Academic Press, San Diego, 1989, pp. 132.Google Scholar
  3. [3]
    J.B. Wagner, Jr, in: High Conductivity Solid Ionic Conductors, (T. Takahashi, Ed.) World Scientific, Singapore, 1989, pp. 146.Google Scholar
  4. [4]
    J.R. MacCallum and C.A. Vincent, Eds., Polymer Electrolyte Reviews, Elsevier, New York, 1987 and 1989, Vols. I and II.Google Scholar
  5. [5]
    N. Munichandraiah, I.G. Scanlon, R.A. Marsh, B. Kumar and A.K. Sircar, Abstract 32, pp. 49, The Electrochem. Soc. Extended Abstracts Vol. 93-I, Honolulu, HI, 1993, May 16–21.Google Scholar
  6. [6]
    F. Capeano, F. Croce and B. Scrosati, J. Electrochem. Soc.138, 1918 (1991).Google Scholar
  7. [7]
    B. Kumar, J.D. Schaffer, N. Munichandraiah and P.T. Weissman, Power Sources 14 (A. Attewell and T. Keily, Eds.) International Power Sources, Symposium Committee, Surrey, UK, 1993, pp. 121.Google Scholar
  8. [8]
    W. Wieczorek, K. Such, H. Wycislik and J. Plocharski, Solid State Ionics36, 255 (1989).CrossRefGoogle Scholar
  9. [9]
    F. Croce, S. Panero and B. Scrosati, Mater. Res. Soc. Symp. Proc.210, 179 (1991).Google Scholar
  10. [10]
    H.Y. Sun, H.J. Sohn, O. Yamamoto, Y. Takeda and N. Imanish, J. Electrochem. Soc.146, 1672 (1991).Google Scholar
  11. [11]
    M. Armand, Solid State Ionics69, 309 (1994).CrossRefGoogle Scholar
  12. [12]
    Y. Aihara, M. Kodama, K. Nakahara, H. Okise and K. Marata, J. Power Sources65, 143 (1997).Google Scholar
  13. [13]
    Y. Ito, K. Kanehori, K. Miyauchi and T. Kudo, J. Mater. Sci.22, 1845 (1987).CrossRefGoogle Scholar
  14. [14]
    J. Kelly, J.R. Owen and B.C.H. Steele, J. Electroanal. Chem.168, 467 (1984).CrossRefGoogle Scholar
  15. [15]
    J. Kelly, J.R. Owen and B.C.H. Steele, J. Power Sources14, 13 (1985).Google Scholar
  16. [16]
    J. Przyluski and W. Wieczorek, Solid State Ionics36, 165 (1989).CrossRefGoogle Scholar
  17. [17]
    M. Alamgir and K. Abraham, J. Electrochem. Soc.140, L96 (1993).Google Scholar
  18. [18]
    M. Sukeshini, A. Nishimoto and M. Watanabe, Solid State Ionics86, 385 (1996).Google Scholar
  19. [19]
    G.B. Appetecchi, F. Croce and B. Scrosati, Electrochim. Acta40, 991 (1995).CrossRefGoogle Scholar
  20. [20]
    H.J. Rhoo, H.T. Jung, K. Park and T.S. Hwang, Electrochim. Acta42, 1571 (1997).CrossRefGoogle Scholar
  21. [21]
    D.L. Vien, N.B. Colthup, W.G. Fateley and J.G. Grasselli, Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Inc., New York, 1991, pp. 85.Google Scholar
  22. [22]
    M.B. Armand, J.M. Chabagno and M.J. Duclot, in: Fast -Ion Transport in Solids (P. Vashishta, J.N. Mundy and G. Shenoy, Eds.) North-Holland, Amsterdam, 1979, pp. 131.Google Scholar
  23. [23]
    M.L. Williams, R.F. Landell and J.D. Ferry, J. Am. Chem. Soc.77, 3701 (1955).Google Scholar
  24. [24]
    Y. Okamoto, T.F. Yeh, H.S. Lee and T.A. Skotheimk J. Polym. Sci. Part A, Polym. Chem.31, 2573 (1993).CrossRefGoogle Scholar
  25. [25]
    H. Vogel, Phys. Z.22, 645 (1922).Google Scholar
  26. [26]
    V.G. Tamman and H. Hesse, Z. Anorg. Allg. Chem. 19, 245 (1926).Google Scholar
  27. [27]
    G.S. Fulcher, J. Am. Ceram. Soc.8, 339 (1925).Google Scholar
  28. [28]
    J. Plocharshi and W. Wieczorek, Solid State Ionics28, 979 (1988).Google Scholar
  29. [29]
    J. Przyluski, K. Such, H. Wycishik and W. Wieczorek, Synth. Met.35, 241 (1990).Google Scholar
  30. [30]
    W. Wieczorek, Mater. Sci. Eng. B15, 108 (1992).CrossRefGoogle Scholar
  31. [31]
    A. Chandra, P.C. Srivastava and S. Chandra, J. Mater. Sci.30, 3633 (1995).CrossRefGoogle Scholar
  32. [32]
    J. Plocharski, W. Wieczorek, J. Przyluski and K. Such, Appl. Phys. A49, 55 (1989).Google Scholar
  33. [33]
    N. Munichandraiah, L.G. Scanlon, R.A. Marsh, B. Kumar and A.K. Sircar, J. Appl. Electrochem.25, 857 (1995).Google Scholar
  34. [34]
    B. Kumar and L.G. Scanlon, J. Power Sources52, 261 (1994).Google Scholar
  35. [35]
    N. Munichandraiah, L.G. Scanlon, R.A. Marsh, B. Kumar and A.K. Sircar, J. Appl. Electrochem.24, 1066 (1994).CrossRefGoogle Scholar
  36. [36]
    J. Przyluski, M. Sickierski and W. Wieczorek, Electrochim. Acta40, 2101 (1995).CrossRefGoogle Scholar
  37. [37]
    B.K. Choi, Y.W. Kim and K.H. Shiv, J. Power Sources68, 357 (1997).Google Scholar
  38. [38]
    B. Kumar, J.D. Schaffer, N. Munichandraiah and L.G. Scanlon, J. Power Sources47, 63 (1994).Google Scholar

Copyright information

© IfI - Institute for Ionics 2000

Authors and Affiliations

  1. 1.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations