, Volume 20, Issue 1, pp 113–120 | Cite as

Contact toxicity of some chemical and biological pesticides to several insect parasitoids and predators

  • J. D. Wilkinson
  • K. D. Biever
  • C. M. Ignoffo


Eight pesticides; methyl parathion, malathion (organo-phosphates), toxaphene (chlorinated hydrocarbon), carbaryl (carbamate), pyrethrin (plant derivative),Bacillus thuringiensis, nuclear polyhedrosis virus (Heliothis) (microbial insecticides), and 2,4-DB (postemergence herbicide) were evaluated at the minimum recommended field dose and reduced dosages for contact toxicity toBrachymeria intermedia (Hymenoptera: Chalcididae), Campoletis sonorensis (Hymenoptera: Ichneumonidae), Chelonus blackburni (Hymenoptera: Braconidae), Meteorus leviventris (Braconidae), Voria ruralis (Diptera: tachninidae), Chrysopa carnea (Neuroptera: Chrysopidae), andHippodamia convergens (Coleoptera: Coccinellidae). At minimum field dosages, percent mortality of parasitoids and predators was>27%, for the chemical insecticides. Mortality from pyrethrin was <31%, in all cases and 0% for 5 of the 8 species tested. Mortality of parasitoids and predators exposed toB. thuringiens is and NPV was<4% while mortality from 2,4-DB was<7%. The toxicity of chemical insecticides to parasitoids and predators at reduced dosages in increasing order of toxicity was malathion > carbaryl > toxaphene > methyl parathion.


Carbamate Malathion Bacillus Thuringiensis Carbaryl Parathion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Huit pesticides: deux organophosphorés (le méthyl-parathion et le malathion), un organochloré (le toxaphène), un carbamate (le carbaryl), un dérivé de plantes (la pyrethrine), deux insecticides microbiens (Bacillus thuringiensis et un virus de la polyédrose nucléaire d'Heliothis) et un herbicide à appliquer à la pousse des feuilles (le 2,4-DB) ont été expérimentés, à la dose minimum recommandée en plein champ et à des doses réduites, pour leur toxicité de contact sur:Brachymeria intermedia (Hyménoptère:Chalcididae), Campoletis sonorensis (Hyménoptère:Ichneumonidae), Chelonus blackburni (Hyménoptère:Braconidae), Meteorus leviventris (Hémynoptère:Braconidae), Voria ruralis (Diptère:Tachinidae), Chrysopa carnea (Neuroptère:Chrysopidae), andHippodamia convergens (Coléoptère:Coccinellidae). Aux doses minimums de plein champ, la mortalité des parasitoïdes et des prédateurs fut supérieure à 27% pour les insecticides chimiques. La mortalité due à la pyréthrine a été inférieure à 31% dans l'ensemble et à 0% pour 5 des 8 espèces examinées. La mortalité des parasitoïdes et des prédateurs exposés auBacillus thuringiensis et au virus de la polyédrose nucléaire fut de 4%, tandis, que la mortalité due au 2,4-DB fut inférieure à 7 %. La toxicité pour les parasitoïdes et des prédateurs des insecticides chimiques à des doses réduites s'établit ainsi: par ordre croissant de toxicité, le malathion > le carbaryl > le toxaphène > le méthyl-parathion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, W. S. — 1925. A method of computing the effectiveness of an insecticide. —J. Econ. Entomol. 18, 265–267.Google Scholar
  2. Bartlett, B. R. — 1958. Laboratory studies on selective aphicides favoring natural enemies of spotted alfalfa aphid. —J. Econ. Entomol., 51, 374–378.Google Scholar
  3. — — 1963. The contact toxicity of some pesticide residues to hymenopterous parasites and coccinellid predators. —J. Econ. Entomol., 56, 694–698.Google Scholar
  4. — — 1964. Toxicity of pesticides to eggs, larvae, and adults of the green jacewing,Chrysopa carnea. —J. Econ. Entomol., 57, 366–369.Google Scholar
  5. Colburn, R. &Asquith, D. — 1970. Contact and residual toxicity of selected acaricides and insecticides to a ladybird beetlsStethorus punctum. —J. Econ. Entomol., 63, 1686–1689.Google Scholar
  6. Lingren, P. D. &Ridgway, R. L. — 1967. Toxicity of five insecticides to several insect predators. —J. Econ. Entomol., 60, 1639–1641.Google Scholar
  7. Lingren, P. D., Ridgway, R. L., Cowan, Jr., C. B., Davis, J. W. &Watkins, W. C. — 1968. Biological control of the bollworm and the tobacco budworm by arthropod predators affected by insecticides. —J. Econ. Entomol., 61, 1521–1525.Google Scholar
  8. Lingren, P. D., Wolfenbarger, D. A., Nosky J. D. &Diaz Jr., M. — 1972. Response ofCampoletis perdistinctus andApanteles marginiventris to insecticides. —J. Econ. Entomol., 65, 1295–1299.PubMedGoogle Scholar
  9. Nicholson, A. J. — 1939. Indirect effects of spray practices on pest populations. —Verh. Int. Kongr. Entomol. 7th, Berlin, 4, 3022–3028.Google Scholar
  10. Pickett, A. D. — 1949. A critique on insect chemical control methods. —Can. Entomol., 81, 67–76.Google Scholar
  11. Ripper, W. E. —1944. Biological control as a supplement to chemical control of insect pests. —Nature, 153, 488–492.Google Scholar
  12. — — 1956. Effect of pesticides on balance of arthropod populations. —Annu. Rev. Entomol., 1, 403–438.CrossRefGoogle Scholar
  13. Smith, R. F. &van den Bosch, R. — 1968. Integrated control. In: Pest Control (W. W. Kilgore &R. L. Doutt, ed.). —Academic Press, New York & London, 295–340.Google Scholar
  14. Stern, V. M. — 1963. The effect of various insecticides onTrichogramma semifumatum and certain predators in southern California. —J. Econ. Entomol. 56, 348–350.Google Scholar
  15. Stern, V. M. &van den Bosch, R. — 1959. The integration of chemical and biological control of the spotted alfalfa aphid. Pt. II. Field experiments on effects of insecticides. —Hilgardia 29, 103–130.Google Scholar
  16. Strickland, E. H. — 1945. Could the widespread use of DDT be a disaster? —Entomol. News, 61. 85.Google Scholar
  17. Tomlin, A. D. &Forgash, A. J. — 1972. Toxicity of insecticides to gypsy moth larvae. —J. Econ. Entomol., 65, 953–959.Google Scholar
  18. Turnipseed, S. G. — 1972. Management of insect pests of soybeans. —Proc. Tall Timbers Conf. Anim. Control Habitat Managt, 4, 189–203.Google Scholar
  19. Ullyett, G. C. — 1948. Insecticide programs and biological control in South Africa. —J. Econ. Entomol., 41, 337–339.Google Scholar
  20. van den Bosch, R. — 1966. The role of parasites and predators on integrated pest control. —Proc. FAO Symp. Integrated Pest Control, 2, 143–147.Google Scholar
  21. van den Bosch, R., Reynolds, H. T. &Dietrick, E. J. — 1956. Toxicity of widely used insecticides to beneficial insects in California cotton and alfalfa fields. —J. Econ. Entomol., 49, 359–363.Google Scholar
  22. Walker, J. K., Shepard, M. & Sterling, W. L. — 1970. Effect of insecticide applications for the cotton fleahopper on beneficial insects and spiders. —Tex. Agric. Exp. Stn., PR-2755, 11 p.Google Scholar
  23. Wigglesworth, V. B. — 1945. DDT and the balance of nature. —Atl. Monthly, 176, 170–173.Google Scholar

Copyright information

© Le François 1975

Authors and Affiliations

  • J. D. Wilkinson
    • 1
  • K. D. Biever
    • 1
  • C. M. Ignoffo
    • 1
  1. 1.Biological Control of Insects Research, Agric. Res. Serv.USDAColumbiaU.S.A.

Personalised recommendations