, Volume 39, Issue 3–4, pp 257–265 | Cite as

A new method for immunologically marking prey and its use in predation studies

  • J. R. Hagler
  • C. M. Durand


We introduce a new method for immunologically examining predator gut contents. It differs from previously described gut content analyses because it does not require the development of prey-specific antibody probes. Instead, insect prey were marked with a readily available antigen, rabbit immunoglobulin G (IgG). We then assayed predators that had fed on IgG labeled prey with an enzyme-linked immunosorbent assay (ELISA) using goat anti-rabbit IgG. Of the predator species that fed on the IgG labeled prey, 98.8% of those with chewing mouthparts scored positive for IgG 1 h after feeding. Our prey-labeling ELISA was less efficient for detecting IgG prey remains in predators with piercing/sucking mouthparts. Only 29.5% of these individuals scored positive for rabbit IgG in their guts 1 h after feeding. An additional study was conducted to measure the retention time of IgG-labeled prey in the guts of two species of predators with chewing mouthparts. Results from this experiment showed that the retention time varied depending on the predator and prey species examined. Results from these studies indicate that this marking technique could have widespread use for analyzing the gut contents of predators with chewing mouthparts, but it has limited application for those predators with piercing/sucking mouthparts.


Predator prey ELISA gut content analysis methods 


La nouvelle méthode d'analyse immunologique du contenu du tube digestif des insectes prédateurs diffère des méthodes précédemment décrites car elle ne demande pas le développement préalable d'anticorps spécifiques de la proie. Au contraire la proie est marquée avec un antigène de mammifère déjà disponible, l'immunoglobuline G de lapin (IgG). Nous avons donc testé cette méthode sur des prédateurs nourris de proies marquées par l'immunoglobuline par la technique ELISA en utilisant un anticorps de l'immunoglobuline de lapin. Parmi les espèces de prédateurs nourries de proies marquées à l'immunoglobuline, 98,8% d'entre elles (du type broyeur) ont réagi positivement à l'immunoglobuline 1 heure après s'être nourries. Notre technique de marquage de proie ELISA est moins efficace pour détecter les restes de proies marqués à l'immunoglobuline chez les prédateurs de type suceur-piqueur. Seulement 29,5% de ces derniers présentent une réaction positive à l'immunolobuline dans leur tube digestif lh après s'être nourris. Les résultats de cette étude montrent que cette technique de marquage pourrait être largement utilisée pour analyser le contenu intestinal des prédateurs de type broyeur mais qu'elle présente un intérêt limité pour les prédateurs de type suceur-piqueur.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin, W. F., James, H. G. &Welch, H. E. — 1955. A study of predators of mosquito larvae and pupae with a radio-active tracer. —Can. Entomol. 87, 350–356.Google Scholar
  2. Booij, C. J. H. &Noorlander, J. — 1992. Farming systems and insect predators. —Agric. Ecosystems Environ., 40, 125–135.CrossRefGoogle Scholar
  3. Breene, R. G. &Sterling, W. L. — 1988. Quantitative phosphorus-32 labeling method for analysis of predators of the cotton fleahopper. —J. Econ. Entomol., 81, 1494–1498.Google Scholar
  4. Byrne, D. N. &Hadley, N. F. — 1988. Particulate surface waxes of whiteflies: morphology, composition and waxing behavior. —Physiol. Entomol., 13, 267–276.Google Scholar
  5. Hagler, J. R. &Cohen, A. C. — 1990. Effects of time and temperature on digestion of purified antigen byGeocoris punctipes reared on artificial diet. —Ann. Entomol. Soc. Am., 83, 1177–1180.Google Scholar
  6. Hagler, J. R., Cohen, A. C., Enriquez, F. J. &Bradley-Dunlop, D. — 1991. An egg specific monoclonal antibody toLygus hesperus. —Biological Control, 1, 75–80.CrossRefGoogle Scholar
  7. Hagler, J. R., Cohen, A. C., Bradley-Dunlop, D. &Enriquez, F. J. — 1992a. Field examination of predation onLygus hesperus using a species-and stage-specific monoclonal antibody. —Environ. Entomol., 21, 896–900.Google Scholar
  8. Hagler, J. R., Cohen, A. C., Bradley-Dunlop, D. &Enriquez, F. J. — 1992b. New approach mark insects for feeding and dispersal studies. —Environ. Entomol., 21, 20–25.Google Scholar
  9. Hagler, J. R. &Naranjo, S. E. — 1994a. A qualitative survey of two coleopteran predators ofBemisia tabaci andPectinophora gossypiella using a multiple prey gut content ELISA. —Environ. Entomol., 23: 193–197.Google Scholar
  10. Hagler, J. R. &Naranjo, S. E. — 1994b. Determining the frequency of heteropteran predation on sweetpotato whitefly and pink bollworm using multiple ELISAs. —Entomol. Exp. Appl., 72: 59–66.Google Scholar
  11. Hengeveld, R. — 1980. Qualitative and quantitative aspects of the food of ground beetles. A review. —Netherlands J. Zool., 30, 555–563.Google Scholar
  12. Henneberry, T. J. & Clayton, T. E. — 1985. Consumption of pink bollworm and tobacco budworm eggs by some predators commonly found in cotton fields. —Environ. Entomol., 416–419.Google Scholar
  13. Hsu, H. T., Vongasaitorn, D. &Lawson, R. H. — 1992. An improved method for serological detection of cymbidium mosaic potexvirus infection in orchids. —Phytopathology, 82, 491–495.Google Scholar
  14. James, H. G. — 1961. Some predators ofAedes stimulans andAedes trichurus in woodland pools. —Can. J. Zool., 39, 533–540.Google Scholar
  15. Lenz, C. J. &Greenstone, M. H. — 1988. Production of a monoclonal antibody to the arylphorin ofHeliothis zea. —Arch. Insect Biochem. Physiol., 9, 167–177.CrossRefGoogle Scholar
  16. Luff, M. L. — 1983. The potential of predators for pest control. —Agric. Ecosystems Environ., 10, 159–181.CrossRefGoogle Scholar
  17. McCarty, M. T., Shepard, M. &Turnipseed, S. G. — 1980. Identification of predaceous arthropods in soybeans by using autoradiography. —Environ. Entomol., 9, 199–203.Google Scholar
  18. McDaniel, S. G., Keeley, L. L. &Sterling, W. L. — 1978. RadiolabelingHeliothis virescens eggs by32P injection of adult females. —Ann. Entomol. Soc. Am., 71, 432–434.Google Scholar
  19. McIver, J. D. — 1981. An examination of the utility of the precipitin test for evaluation of arthropod predator-prey relationships. —Can. Entomol., 113, 213–222.Google Scholar
  20. Murray, R. A. &Solomon, M. G. — 1978. A rapid technique for analysing diets of invertebrate predators by electrophoresis. —Ann. Appl. Biol., 90, 7–10.Google Scholar
  21. Orphanides, G. M., Gonzales, D. &Bartlett, B. R. — 1971. Identification and evaluation of pink bollworm predators in southern California. —J. Econ. Entomol., 64, 421–424.Google Scholar
  22. Stuart, M. K. &Greenstone, M. H. — 1990. Beyond ELISA: a rapid, sensitive, specific immunodot assay for identification of predator stomach contents. —Ann. Entomol. Soc. Am., 83, 1101–1107.Google Scholar
  23. Sunderland, K. D. — 1987. A review of methods of quantifying invertebrate predation occurring in the field. —Acta. Phytopath. Entomol. Hung., 22, 13–34.Google Scholar
  24. Sutula, C. L., Gillett, J. M., Morrissey, S. M. &Ramsdell, D. C. — 1986. Interpreting ELISA data and establishing the positive-negative threshold. —Plant Disease, 70, 722–726.Google Scholar
  25. Symondson, W. O. C. &Liddell, J. E. — 1993. A monoclonal antibody for the detection of arionid slug remains in carabid predators. —Biol. Control., 3, 207–214.CrossRefGoogle Scholar
  26. Tijssen, P. — 1985. Practice and Theory of Enzyme Immunoassays Vol. 15. Lab Techniques in Biochemistry and Molecular Biology. —Elsevier, Amsterdam, Holland.Google Scholar

Copyright information

© Lavoisier Abonnements 1994

Authors and Affiliations

  • J. R. Hagler
    • 1
  • C. M. Durand
    • 1
  1. 1.Western Cotton Research LaboratoryUSDA-ARSPhoenixUSA

Personalised recommendations