Skip to main content

Current developments in microbial control of insect pests and prospects for the early 21st century

Abstract

The role of microbial control in crop and forest protection and the abatement of insects of medical and veterinary importance has expanded considerably with the discovery and development of new microbial control agents and genetic improvement in bacterial and viral pathogens, and improvements in formulation, application options and compatibility with other interventions. A synopsis of the literature regarding the current use of bacteria, viruses, fungi, protozoans and nematodes as microbial control agents is presented along with speculation on their potential in the early 21st century. The most widely used of all microbial control agents isBacillus thuringiensis. The isolation within the past two decades of new strains that are larvicidal for certain Diptera and Coleoptera has increased the utility of the bacterium considerably. Further improvements in efficacy and broadening of its host range are in progress with the isolation of strains with new toxins and the manipulation ofB. thuringiensis genes that encode toxin production using both recombinant and nonrecombinant methods. Genetic manipulation of these genes has also enabled their incorporation into crop plants. The development and commercial availability of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae expands the options for the control of insects, especially those with soil inhabiting stages. The results of natural epizootics of fungi and viruses often obviate the requirement for additional interventions. Breakthroughs in understanding the genetics ofBaculovirus and subsequent gene manipulation have increased their virulence and utility. Improved production methods that utilize insect cell culture technology may enable affordable use ofBaculovirus in the not too distant future. Fungi continue to offer the only control options using entomopathogens against plant sucking insects. Although fungi have great potential for development as microbial control agents, only a few have been used on an operational scale. Some factors that might limit the full range of entomopathogen potential, including development of resistance, are discussed. Because of their selectivity and minimal environmental impact, microbial control agents will be ideal components of integrated pest management programs in the early 21st century and beyond. However, if they are used merely as replacements for chemical pesticides, then eventually these agents will face some of the same fate as the chemicals they replace, particularly with respect to resistance.

Résumé

Le rôle de la lutte microbiologique dans la protection des cultures et des forêts et dans la limitation des insectes d'intérêt médical ou vétérinaire s'est accru considérablement avec la découverte et la mise au point de nouveaux agents de lutte microbiologique, l'amélioration génétique des pathogènes bactériens et viraux et les améliorations dans la formulation, les choix d'application et la compatibilité avec d'autres formes d'interventions. Une synthèse bibliographique de l'utilisation actuelle des bactéries, virus, champignons, protozoaires et nématodes en tant qu'agents de lutte microbiologique est présentée en même temps qu'une réflexion sur leurs potentialités à l'aube du XXIe siècle. L'agent microbiologique le plus largement utilisé estBacillus thuringiensis. L'isolation, au cours des deux décennies précédentes, de nouvelles souches larvicides pour certains Diptères et Coléoptères a fortement augmenté l'utilité de la bactérie. D'autres améliorations de l'efficacité et l'élargissement de son spectre d'hôtes sont en cours, grâce à l'isolation de souches produisant de nouvelles toxines et à la manipulation de gènes deB. thuringiensis codant une production de toxines à l'aide de méthodes recombinante et non-recombinante. La manipulation génétique de ces gènes a aussi permis leur introduction dans des plantes cultivées. Le développement et la commercialisation de nématodes entomopathogènes des familles Steinermatidae et Heterorhabditidae élargissent la gamme des agents disponibles pour la lutte contre les insectes, notamment pour ceux présentant des stades de développement dans le sol. Les épizooties naturelles de champignons et virus évitent souvent le recours à des interventions supplémentaires. Le bond en avant fait dans la compréhension de la génétique des Baculovirus et la manipulation de gènes qui a suivi a accru leur virulence et leur utilité. L'amélioration des méthodes de production qui utilisent la technologie de la culture de cellules d'insectes pourra permettre, dans un avenir assez proche, l'utilisation des baculovirus à un coût raisonnable. Les champignons restent les seuls agents entomopathogènes utilisables contre les phytophages suceurs. Bien que les champignons présentent une forte possibilité de développement en tant qu'agents de lutte microbiologique, seuls un petit nombre d'entre eux ont été utilisés à une grande échelle. Certains facteurs qui pourraient limiter leur potentiel, incluant le développement de résistance, sont discutés. En raison de leur sélectivité et de leur faible impact sur l'environnement, les agents de lutte microbiologique seront des éléments très intéressants pour la lutte contre les ravageurs pour le début du XXIe siècle et au-delà. Cependant, s'ils sont utilisés surtout comme des éléments de remplacement de pesticides chimiques, il se peut que ces agents aient à faire face par la suite aux mêmes difficultés que les produits chimiques qu'ils remplacement, en particulier sur le plan de la résistance.

This is a preview of subscription content, access via your institution.

References

  1. Adang, M. J. — 1991.Bacillus thuringiensis insecticidal crystal proteins: Gene structure, action and utilization. In: Biotechnology for Biological Control of Pests and Vectors, (K. Maramorosch, ed). —CRC Press, Boca Raton, 3–24.

    Google Scholar 

  2. Akhurst, R.J. — 1990. Safety to nontarget invertebrates of nematodes of economically important pests. In: Safety of Microbial Insecticides (M. Laird, L. A. Lacey &E. W. Davidson, eds). —CRC Press, Boca Raton, 233–240.

    Google Scholar 

  3. Akhurst, R. J. &Boemare, M.E. — 1990. Biology and taxonomy ofXenorhabdus. In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler &H. K. Kaya, eds). —CRC Press, Boca Raton, 75–90.

    Google Scholar 

  4. Akpoboua, L.K.B., Guillet, P., Kurtak, D.C. &Poudiougo, P. — 1989. Le rôle deB. thuringiensis H14 dans la lutte contreSimulium damnosum Theobald (Diptera: Simuliidae) vecteur de l'Onchocercose en Afrique Occidentale. —Naturaliste Can., 116, 167–174.

    Google Scholar 

  5. Alfiler, A.R.R. — 1992. Current status of the use of a baculovirus inOryctes rhinoceros control in the Philippines. In: Use of Pathogens in Scarab Pest Management (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 63–77.

    Google Scholar 

  6. Bateman, R.P., Carey, M. &Prior, C. — 1993. The enhanced infectivity ofMetarhizium flavoviride in oil formulations to desert locusts at low humidities. —Ann. Appl. Biol., 122, 145–152.

    Google Scholar 

  7. Becker, N. &Ludwig, M. — 1993. Investigations on possible resistance inAedes vexans field populations after a 10-year application ofBacillus thuringiensis israelensis. —J. Am. Mosq. Cont. Assoc., 9, 221–224.

    CAS  Google Scholar 

  8. Bedding, R.A. — 1984a. Large scale production, storage and transport of the insect parasitic nematodes,Neoaplectana spp. andHeterorhabditis spp. —Ann. Appl. Biol., 104, 117–120.

    Google Scholar 

  9. Bedding, R.A. — 1984b. Nematode parasites of Hymenoptera. In: Plants and Insect Nematodes. (W.R. Nickle, ed). —Marcel Dekker, New York, 755–795.

    Google Scholar 

  10. Bedding, R.A. &Akhurst, R.J. — 1974. Use of the nematodeDeladenus siricidicola in the biological control ofSirex noctilio in Australia. —J. Austr. Entomol. Soc., 13, 129–135.

    Google Scholar 

  11. Bedford, G.o. — 1981. Control of rhinoceros beetle by Baculovirus. In: Microbial Control of Prests and Plant Disease 1970–1980. (H.D. Burges, ed). —Academic Press, London, 409–426.

    Google Scholar 

  12. Begley, J.W. — 1990. Efficacy against insects in habitats other than soil. In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler, &H.K. Kaya, eds). —CRC Press, Boca Raton, 215–231.

    Google Scholar 

  13. Brewer, G.J. — 1991. Resistance toBacillus thuringiensis subsp.kurstaki in the sunflower moth (Lepidoptera, Pyralidae). —Environ. Entomol., 20, 316–322.

    Google Scholar 

  14. Briese, D.T. — 1986. Insect resistance to baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control, (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton 237–263.

    Google Scholar 

  15. Brooks, W.M. — 1988. Entomogenous Protozoa. In: Handbook of Natural Pesticides, Vol. V: Microbial Insecticides, Part A: Entomogenous Protozoa and Fungi (C.M. Ignoffo &N.B. Mandava, eds). —CRC Press, Boca Raton, 1–149.

    Google Scholar 

  16. Bulla, L.A., Jr., Raymond, K.C. &Faust, R.M. — 1991. Mosquitocidal toxin gene ofBacillus thuringiensis subspeciesisraelensis. In: Biotechnology for Biological Control of Pests and Vectors. (K. Maramorosch, ed.). —CRC Press, Boca Raton, 25–34.

    Google Scholar 

  17. Burges, H.D. (ed.). — 1981. Microbial Control of Pests and Plant Diseases 1970–1980. —Academic Press, London, 949pp.

    Google Scholar 

  18. Burges, H. D. & Hussey, N.W. (eds.). — 1971. Microbial Control of Insects and Mites. —Academic Press, 861 pp.

  19. Burnell, A.M. — 1994. Molecular genetics of entomopathogenic nematodes. —Proc. VIth Int. Colloq. Invertebr. Pathol. pp.23–28.

  20. Cabanillas, H.E., Poinar, G.O. Jr. &Raulston, J.R. — 1994.Steinernema riobravis sp. nov. (Rhabditida: Steinernematidae) from Texas. —Academic — Fund. Appl. Nematol., 17, 123–131.

    Google Scholar 

  21. Cabanillas, H.E. &Raulston, J.R. — 1994. Pathogenicity ofSteinernema riobravis against corn earworm,Helicoverpa zea (Boddie). —Fund. Appl. Nematol., 17, 219–223.

    Google Scholar 

  22. Carlton, B.C. &Gawron-Burke, C. — 1993. Genetic improvement ofBacillus thuringiensis for bioinsecticide development. In: Advanced Engineered Pesticides, (L. Kim, ed.). —Marcel Dekker, New York, 43–61.

    Google Scholar 

  23. Carruthers, R.I. &Onsager, J.A. — 1993. Perspective on the use of exotic natural enemies for biological control of pest grasshoppers. —Environ. Entomol., 22, 885–903.

    Google Scholar 

  24. Carruthers, R.I. & Poprawski, T.J. — 1994. Use of exotic fungal isolates against indigenous pests. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.334–342.

  25. Caudwell, R.W. & Gatehouse, A.G. — 1994. Extruded starch contact baits for the formulation of grasshopper and locust entomopathogens. —Proc. Brighton Crop Protect. Conf., pp.67–74.

  26. Chilcott, C.N., Knowles, B.H., Ellar, D.J. &Drobniewski, F.A. — 1990. Mechanism of action ofBacillus thuringiensis israelensis parasporal body. In: Bacterial Control of Mosquitoes and Black Flies: Biochemistry Genetics, and Applications ofBacillus thuringiensis israelensis andBacillus sphaericus (H. de Barjac &D. Sutherland, eds). —Rutgers Univ. Press, New Brunswick, 45–65.

    Google Scholar 

  27. Corsaro, B.G., Gijzen, M., Wang, P. &Granados, R.R. — 1993. Baculovirus enhancing proteins as determinants of viral pathogenesis. In: Parasites and Pathogens of Insects, Vol. 2: Pathogens (N.E. Beckage, S.N. Thompson &B.A. Federici, eds). —Academic Press, San Diego, 127–145.

    Google Scholar 

  28. Cory, J.S., Hirst, M.L., Williams, T., Hails, R.S., Goulson, D. & Green, B. — 1994. First field trial of a genetically improved baculovirus insecticide. —Proc. VIth Int. Colloq. Invertebr. Pathol. pp.427.

  29. Cunningham, G.L. — 1992. APHIS, grasshopper integrated pest management in the United States, a cooperative project with emphasis on biological control. In: Biological Control of Locusts and Grasshoppers (C.J. Lomer &C. Prior, eds). —C.A.B. International, Wallingford, 21–25.

    Google Scholar 

  30. Cunningham, J. C. — 1982. Field trials with baculoviruses: Control of forest insect pests. In: Microbial and Viral Pesticides, (E. Kurstak, ed). —Marcel Dekker, New York, 335–386.

    Google Scholar 

  31. Cunningham, J.C. — 1995. Baculoviruses as microbial insecticides. In: Novel Approaches to Integrated Pest Management, (R. Reuveni, ed). —Lewis Publishers, Boca Raton, 261–292.

    Google Scholar 

  32. Cunningham, J.C. &Entwistle, P.F. — 1981. Control of sawflies by baculovirus. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H.D. Burges ed). —Academic Press, London, 379–407.

    Google Scholar 

  33. Davidson, E.W. — 1985.Bacillus sphaericus as a microbial control agent for mosquito larvae. In: Integrated mosquito control methodologies Vol. 2, (M. Laird, &J. Miles, eds). —Academic Press, London, 213–226.

    Google Scholar 

  34. Dimock, M., Turner, J. &Lampel, J. — 1993. Endophytic microorganisms for delivery of genetically engineered microbial pesticides in plants. In: Advanced Engineered Pesticides (L. Kim, ed). —Marcel Dekker, New York, 85–97.

    Google Scholar 

  35. Edwards, C.A. — 1990. The importance of integration in sustainable agricultural systems. In: Sustainable Agricultural Systems (C.A. Edwards, R. Lal, P. Madden, R.H. Miller &G. House, eds). —St. Lucie Press, Delray Beach, 249–264.

    Google Scholar 

  36. Ehlers, R.-U. — 1994. Liquid culture production of entomopathogenic nematodesHeterorhabditis andSteinernema spp. —Proc. VIth Int. Colloq. Invertebr Pathol., pp. 75–81.

  37. Elkinton, J.S., Hajek, A.E., Boettner, G.H. &Simons, E.E. — 1991. Distribution and apparent spread ofEntomophaga maimaiga (Zygomycetes: Entomophthorales) in gypsy moth (Lepidoptera: Lymantriidae) populations in North America. —Environ. Entomol., 20, 1601–1605.

    Google Scholar 

  38. Entwistle, P.F., Cory, J.S., Bailey, M.J., &Higgs, S. — 1993.Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice. —John Wiley & Sons, New York, 311 pp.

    Google Scholar 

  39. Evans, H.F. — 1986. Ecology and epizootiology of Baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 89–132.

    Google Scholar 

  40. Federici, B.A. — 1994.Bacillus thuringiensis: Biology, application, and prospects for further development. In: Proc. 2nd CanberraBacillus thuringiensis Mtg. (R. K. Akhurst, ed). — 1–14.

  41. Federici, B.A., Lüthy, P. &Ibarra, J.E. — 1990. Parasporal body ofBacillus thuringiensis israelensis. In: Bacterial Control of Mosquitoes and Black Flies: Biochemistry Genetics, and Applications ofBacillus thuringiensis israelensis andBacillus sphaericus (H. de Barjac &D. Sutherland, eds). —Rutgers Univ. Press, New Brunswick, 17–44.

    Google Scholar 

  42. Federici, B.A. & Wu, D. — 1994. Synergism of insecticidal activity inBacillus thuringiensis. In: Proc. 2nd CanberraBacillus thuringiensis Mtg. (R. K. Akhurst, ed). — 23–30.

  43. Feitelson, J.S. — 1993. TheBacillus thuringiensis family tree. In: Advanced Engineered Pesticides (L. Kim, ed) —Marcel Dekker, New York, 63–71.

    Google Scholar 

  44. Feng, M.G., Poprawski, T.J. &Khatchatourians, G.G. — 1994. Production, formulation and application of the entomopathogenic fungusBeauveria bassiana for insect control: current status. —Biocont. Sci. Technol., 4, 3–34.

    Google Scholar 

  45. Ferré, J., Real, M. D., Van Rie, J., Jansens, S. &Peferoen, M. — 1991. Resistance to theBacillus thuringiensis bioinsecticide in a field population ofPlutella xylostella is due to a change in a midgut membrane receptor. —Proc. Natl. Acad. Sci., USA 88, 5119–5123.

    PubMed  Google Scholar 

  46. Ferro, D.N. — 1993. Potential for resistance otBacillus thuringiensis: Colorado potato beetle (Coleoptera: Chrysomelidae). A model system. —Am. Entomol., 39, 38–44.

    Google Scholar 

  47. Ferron, P. — 1981. Pest control by the fungiBeauveria andMetarhizium In: Microbial Control of Pests and Plant Diseases 1970–1980, (H. D. Burges, ed). —Academic Press, London, 465–483.

    Google Scholar 

  48. Ferron, P., Fargues, J. &Riba, G. — 1991. Fungi as microbial insecticides against pests. In: Handbook of Applied Mycology. Vol. 2 (D.K. Arora, L. Ajelio &K.G. Mukerji eds). —Marcel Dekker, New York, 665–706.

    Google Scholar 

  49. Francki, R.I.B., Fauquet, C.M., Knudson, D.L., andBrown, F. — 1991. Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses. —Arch. Virol. Suppl., 2. Springer Verlag, Vienna.

    Google Scholar 

  50. Fransen J.J. — 1990. Natural enemies of whiteflies: Fungi. In: Whiteflies: Their Bionomics, Pest Status and Management (D. Gerling, ed). —Intercept, Andover, 187–210.

    Google Scholar 

  51. Friedman, M.J. — 1990. Commercial production and development In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler &H.K. Kaya, eds). —CRC Press, Boca Raton, 153–172.

    Google Scholar 

  52. Fuxa, J.R. — 1989. Fate of released entomopathogens with reference to risk assessment of genetically engineered microorganisms. —Bull. Entomol. Soc. Am., 35, 12–24.

    Google Scholar 

  53. Fuxa, J.R. — 1990. Environmental risks of genetically engineered entomopathogens. In: Safety of Microbial Insecticides (M. Laird, L.A. Lacey &E.W. Davidson, eds). —CRC Press, Boca Raton, 203–207.

    Google Scholar 

  54. Fuxa, J.R. — 1992. Pathogens for insect control. In: A New Technological Era for American Agriculture. — OTA Commissioned Background Papers. Part B. Emerging Plant Technology.Congress of the United States, Office of Technology Assessment, Washington, D. C. pp 263–349.

  55. Fuxa, J.R. &Tanada, Y. (eds.) — 1987 Epizootiology of Insect Diseases. —Wiley & Sons, New York, pp. 3–21.

    Google Scholar 

  56. Fuxa, J.R. &A.R. Richter — 1989. Reversion of resistance bySpodoptera frugiperda to nuclear polyhedrosis virus. —J. Invertebr. Pathol., 53, 52–56.

    Google Scholar 

  57. Gasser, C.S. &R.T. Fraley — 1989. Genetically engineered plants for crop improvement. —Science. 244, 1293–1299.

    CAS  Google Scholar 

  58. Gaugler, R. &H.K. Kaya (eds.). — 1990. Entomopathogenic Nematodes in Biological Control. —CRC Press, Boca Raton, 365 pp.

    Google Scholar 

  59. Georgis, R. — 1990. Formulation and application technology. In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler &H.K. Kaya, eds). —CRC Press, Boca Raton, 173–194.

    Google Scholar 

  60. Georgis, R. & Grewal, P.S. — 1994. Commercial application of entomopathogenic nematodes. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 157–163.

  61. Glare, T.R. — 1992. Fungal pathogens of scarabs. In: Use of Pathogens in Scarab Pest Management (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 63–77.

    Google Scholar 

  62. Glen, D.M., Wilson, M.J., Pearce, J.-D. & Rodgers, P.B. — 1994.Phasmarhabditis hermaphrodita, a novel nematode biocontrol agent for slugs. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.164–169.

  63. Goettel, M. — 1992a. Fungal agents for biocontrol. In: Biological Control of Locusts and Grasshoppers (C.J. Lomer &C. Prior, eds). —CAB International, Wallingford pp. 122–132.

    Google Scholar 

  64. Goettel, M. — 1992b. Whatever happened to the “I” in “IPM”? Editorial, Society for Invertebrate Pathology Newsletter, 24, 5–6.

    Google Scholar 

  65. Goettel, M.S., Johnson, D.L. &Inglis, G.D. — 1995. The role of fungi in the control of grasshoppers. —Can. J. Botany, 73 (suppl. 1), S71-S75

    Google Scholar 

  66. Goldman, L.F., Arnold, J. &Carlton, B.C. — 1986. Selection for resistance toBacillus thuringiensis subspeciesisraelensis in field and laboratory populations of the mosquitoAedes aegypti. —J. Invertebr. Pathol., 47, 317–324.

    CAS  PubMed  Google Scholar 

  67. Gould, F., Martinez-Ramirez, A., Ferré, J., Silva, F.J. &Moar, W.J. —1992. Broad spectrum resistance toBacillus thuringiensis toxins inHeliothis virescens. —Proc. Natl. Acad. Sci. USA., 89, 7986–7990.

    CAS  PubMed  Google Scholar 

  68. Granados, R.R. &Federici, B.A. (eds.)., — 1986. The Biology of Baculoviruses. Vol. I & II. —CRC Press, Boca Raton.

    Google Scholar 

  69. Granados, R.R. &McKenna, K.A. — 1995. Insect cell culture methods and their use in virus research. In: Baculovirus Expression Systems and Biopesticides (M.L. Shuler, H.A. Wood, R.R. Granados &D.A. Hammer, eds). —Wiley-Liss Publ., New York, 13–40.

    Google Scholar 

  70. Grewal, P.S., Selvan, S. andGaugler, R. — 1994. Thermal adaptation of nematodes: niche breadth for infection, establishment, and reproduction. —J. Therm. Biol., 19, 245–253.

    Google Scholar 

  71. Gröner, A. — 1986. Specificity and safety of baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 177–202.

    Google Scholar 

  72. Gröner, A. — 1990. Safety to nontarget invertebrates of baculoviruses. In: Safety of Microbial Insecticides, (M. Laird, L.A. Lacey &E.W. Davidson, eds). —CRC Press, Boca Raton, 135–147.

    Google Scholar 

  73. Hajek, A. E. Elkinton, J. S., Smitley, D. R. & Bauer, L. S. — 1994. Re-discovery of the fungusEntomophaga maimaiga and its application for gypsy moth control. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 385–387.

  74. Hajek, A. E., Humber, R. A. &Elkinton, J. S. — 1995. Mysterious origin ofEntomophaga maimaiga in North America. —Am. Entomol., 41, 31–41.

    Google Scholar 

  75. Hajek, A. E. &Roberts, D. W. — 1991. Pathogen reservoirs as a biological control resource: introduction ofEntomophaga maimaiga to North American gypsy moth,Lymantria dispar, populations. —Biol. Control 1, 29–34.

    Article  Google Scholar 

  76. Hall, R. A. — 1981. The fungusVerticillium lecanii as a microbial insecticide against aphids and scales. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H.D. Burges, ed) —Academic Press, London, 483–498.

    Google Scholar 

  77. Harper, J. D. — 1986. Interactions between baculoviruses and other entomopathogens, chemical pesticides and parasitoids. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 133–155.

    Google Scholar 

  78. Harper, J. D. — 1987. Applied epizootiology: microbial control of insects. In: Epizootiology of Insect Diseases (J.R. Fuxa &Y. Tanada, eds). —John Wiley & Sons New York, 473–496.

    Google Scholar 

  79. Henry, J.E. — 1981. Natural and applied control of insects by Protozoa. —Annu. Rev. Entomol., 26, 49–73.

    Article  Google Scholar 

  80. Henry, J.E. &Oma, E.A. — 1981. Pest control byNosema locustae, a pathogen of grasshoppers and crickets. In: Microbial Control of Pests and Plant Diseases 1970–1980 (H.D. Burges, ed) —Academic Press, London, 573–586.

    Google Scholar 

  81. Henry, J.E. &Onsager, J.A. — 1982. Large-scale test of control of grasshoppers on rangeland withNosema locustae. —J. Econ. Entomol., 75, 31–35.

    Google Scholar 

  82. Hollander, A.K. — 1991. Environmental impacts of genetically engineered microbial and viral biocontrol agents. In: Biotechnology for Biological Control of Pests and Vectors (K. Maramorosch, ed). —CRC Press, Boca Raton, 251–266.

    Google Scholar 

  83. Hostetter, D.L. andPuttler, P. — 1991. A new broad host spectrum nuclear polyhedrosis virus isolated from a celery looper,Anagrapha falcifera (Kirby), (Lepidoptera: Noctuidae). —Environ. Entomol., 20, 1480–1488.

    Google Scholar 

  84. Hoy, M.A. &Herzog, D.C. — 1985. Biological Control in Agricultural IPM Systems. —Academic Press, New York. 589 pp.

    Google Scholar 

  85. Huber, J. — 1986. Use of baculoviruses in pest management programs. In: The Biology of Baculoviruses, Vol. II Practical Application for Insect Control (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 181–202.

    Google Scholar 

  86. Huber, J. — 1990. Viral insecticides: Profits, problems, and prospects. In: Pesticides and Alternatives, (J.E. Casida, ed). —Elsevier Science Publishers, B. V., Amsterdam, 117–122.

    Google Scholar 

  87. Hukuhara, T. &J.-R. Bonami, — 1991. Reoviridae. In: Atlas of Invertebrate Viruses (J.R. Adams &J.-R. Bonami, eds). —CRC Press, Boca Raton, 393–434.

    Google Scholar 

  88. Ignoffo, C.M. — 1981. The fungusNomuraea rileyi as a microbial insecticide. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H.D. Burges, ed). —Academic Press, London, 513–538.

    Google Scholar 

  89. Ignoffo, C.M. — 1985. Manipulating enzootic-epizootic diseases of arthropods In: Biological Control in Agricultural IPM Systems, (M.A. Hoy &D.C. Herzog eds). —Academic Press, New York, 243–262.

    Google Scholar 

  90. Ignoffo, C.M. &Couch, T.L. — 1981. The nucleopolyhedrosis virus ofHeliothis species as a mocrobial insecticide. In: Microbial Control of Pests and Plant Diseases 1970–1980., (H.D. Burges, ed). —Academic Press, London, 330–362.

    Google Scholar 

  91. Inglis, G.D., Goettel, M.S. &Johnson, D.L. — 1995. Influence of ultraviolet protectants on the persistence of the entomopathogenic fungus,Beauveria bassiana. —Biol. Cont., 5, 581–590.

    Google Scholar 

  92. Jackson, T.A., Pearson, J.F., O'Callaghan, M. andWillocks, M.J. — 1992. Pathogen to product — Development ofSerratia entomophila (Enterobacteriaceae) as a commercial biological control agent for the New Zealand grass grub (Costelytra zealandica). In: Use of Pathogens in scarab Pest Management, (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 191–198.

    Google Scholar 

  93. Katagiri, K. — 1969. Review of microbial control of insect pests in forests in Japan. —Entomophaga., 14, 203–214.

    Article  Google Scholar 

  94. Katagiri, K. — 1981. Pest control by cytoplasmic polyhedrosis viruses. In: Microbial Control of Pests and Plant Diseases 1970–1980 (H. D. Burges, ed). —Academic Press, London, 433–440.

    Google Scholar 

  95. Kaya, H.K. &Gaugler, R. — 1993. Entomopathogenic nematodes. —Annu. Rev. Entomol., 38, 181–206.

    Article  Google Scholar 

  96. Kennedy, G.G. &Whalon, M.E. — 1995. Managing pest resistance toBacillus thuringiensis endotoxins: constraints and incentives to implementation. —Environ. Entomol., 88, 454–460.

    Google Scholar 

  97. Klein, M. G. — 1990 Efficacy against soil inhabiting pests. In: Entomopathogenic Nematodes in Biological Control (R. Gaugler &H.K. Kaya, eds). —CRC Press, Boca Raton, 195–231.

    Google Scholar 

  98. Klein, M.G. — 1992. Use ofBacillus popilliae in Japanese beetle control. In: Use of Pathogens in Scarab Pest Management. (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 179–190.

    Google Scholar 

  99. Klein, M. G. & Georgis, R. — 1994. Application techniques for entompathogenic nematodes. —Proc. VIth. Int. Colloq. Invertebr. Pathol., pp. 483–484.

  100. Klein, M.G. &Jackson, T.A. — 1992. Bacterial diseases of scarabs. In: Use of Pathogens in Scarab Pest Management (T.A. Jackson &T. R. Glare, eds). —Intercept, Andover, 43–61.

    Google Scholar 

  101. Klein, M.G. &Kaya, H.K. — 1995.Bacillus andSerratia species for scarab control., —Mem. Inst. Oswaldo Cruz., 90, 87–95.

    Google Scholar 

  102. Kurtak, D., Grunewald, J. & Baldry, D.A.T. — 1987. Control of black fly vectors of onchocerciasis in Africa. In: Black Flies: Ecology, Population Management, and Annotated World List, (K. C. Kim & R. Merritt, eds). —Penn. State Univ. Press, 341–362.

  103. Lacey, L.A. — 1990. Persistence and formulation ofBacillus sphaericus. In: Bacterial control of mosquitoes, and black flies: Biochemistry, genetics, and applications ofBacillus thuringiensis israelensis andBacillus sphaericus, (H. de Barjac &D. Sutherland, eds) —Rutgers Univ. Press, New Brunswick, 284–294.

    Google Scholar 

  104. Lacey, L.A., Fransen, J.J. &Carruthers, R. — 1995. Global distribution of naturally occurring fungi ofBemisia, their biologies and use as biological control agents. In:Bemisia 1995: taxonomy, biology, damage, and management (D. Gerling &R. Mayer, eds). —Intercept, Andover,in press.

    Google Scholar 

  105. Lacey, L.A. &Harper, J.D. — 1986. Microbial control and integrated pest management. —J. Entomol. Sci., 21, 206–213.

    Google Scholar 

  106. Lacey, L.A. &Lacey, C.M. — 1990. The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. —J. Am. Mosq. Cont. Assoc., 6, suppl. 2: 1–93.

    Google Scholar 

  107. Lacey, L.A. &Mulla, M.S. — 1990. The safety ofBacillus pathogens of mosquitoes and black flies for nontarget organisms in the aquatic environment. In: Safety of Microbial Insecticides, (M. Laird, L.A. Lacey &E.W. Davidson, eds) —CRC Press Boca Raton, 169–188.

    Google Scholar 

  108. Lacey, L.A. &Orr, B.K. — 1994. The role of biological control of mosquitoes in integrated vector control. —Am. J. Trop. Med. Hyg., 50, suppl. 97–115.

    CAS  PubMed  Google Scholar 

  109. Lacey, L.A. &Undeen, A.H. — 1986. Microbial control of black flies and mosquitoes. —Annu. Rev. Entomol., 31, 265–296.

    Article  CAS  PubMed  Google Scholar 

  110. Laird, M., Lacey, L.A. &Davidson, E.W. (eds) — 1990. Safety of Microbial Insecticides. —CRC Press, Boca Raton, 259 pp.

    Google Scholar 

  111. Latgé, J.P. &Papierok, B. — 1988. Aphid pathogens. In: Aphids Their Biology, Natural Enemies and Control, (A.K. Minks &P. Harrewijn, eds) — Vol.B.,Elsevier Science Publishers B. V., Amsterdam, 323–335.

    Google Scholar 

  112. Lisansky, S.G. and Coombs, J. — 1994. Developments in the market for biopesticides. —Proc. Brighton Crop Protect. Conf. pp. 1049–1054.

  113. Lobo Lima, M.L., Brito, J.M. &Henry, J.E. — 1992. Biological control of grasshoppers in the Cape Verde Islands. In: Biological Control of Locusts and Grasshoppers, (C.J. Lomer &C. Prior, eds). —CAB International, Wallingford 287–295.

    Google Scholar 

  114. Luckow, V.A. &Summers, M.D. — 1988. Trends in the development of baculovirus expression vectors. —Biotechnol., 6, 47–55.

    Article  CAS  Google Scholar 

  115. Luna, J. M. &House, G.J. — 1990. Pest management in sustainable agricultural systems. In: Sustainable Agricultural Systems, (C.A. Edwards, R. Lal, P. Madden, R.H. Miller &G. House, eds). —St. Lucie Press, Delray Beach, 157–173.

    Google Scholar 

  116. Maddox, J.V., Brooks, W.M. &Fuxa, J.R. — 1981.Vairimorpha necatrix, a pathogen of agricultural pests: potential for pest control. In: Microbial Control of Pests and Plant Diseases 1970–1980 (H.D. Burges, ed). —Academic Press, London, 587–594.

    Google Scholar 

  117. Mamiya, Y. — 1988.Steinernema kushidai n. sp. (Nematoda: Steinernematidae) associated with scarabaeid beetle larvae from Shizuoka, Japan. —Appl. Entomol. Zool., 23, 313–320.

    Google Scholar 

  118. Mamiya, Y. — 1989. Comparison of the infectivity ofSteinernema kushidai (Nematode: Steinernematidae) and other steinernematid and heterorhabditid nematodes for three different insects. —Appl. Ent. Zool., 24, 302–308.

    Google Scholar 

  119. Marrone, P.G. — 1993. Engineered plants and microbes in integrated pest management. In: Advanced Engineered Pesticides, (L. Kim, ed),Marcel Dekker, New York, 233–247.

    Google Scholar 

  120. Marrone, P.G. — 1993. Present and future use ofBacillus thuringiensis in integrated pest management systems: An industrial perspective. —Biocont. Sci. Technol., 4, 517–526.

    Google Scholar 

  121. Mason, P.G. &Erlandson, M.A., — 1994. The potential of biological control for management of grasshoppers (Orthoptera: Acrididae) in Canada. —Can. Entomol., 126, 1459–1491.

    Google Scholar 

  122. McCoy, C.W. — 1981. Pest control by the fungusHirsutella thomposonii. In: Microbial Control of Pests and Plant Diseases 1970–1980. (H. D. Burges, ed). —Academic Press, London, 499–512.

    Google Scholar 

  123. McCoy, C.W., Samson R.A. &Boucias, D.G. — 1988. Entomogenous fungi. In: Handbook of Natural Pesticides, Vol. V: Microbial Insecticides, Part A: Entomogenous Protozoa and Fungi, (C. M. Ignoffo &N. B. Mandava, eds) —CRC Press, Boca Raton, 151–236.

    Google Scholar 

  124. McCoy, C.W., Selhime, A.G., Kanavel, R.F. andHill, A.J. — 1971. Suppression of citrus rust mite populations with application of fragmented mycelia ofHirsutella thompsoniiJ. Invertebr. Pathol., 17, 270–276.

    CAS  PubMed  Google Scholar 

  125. McDonald, R.C., Harper, J.D. & Dickerson, W.A. — 1993. Biological Control: Developing Strategies for the 90's. —Proc. NCDA/NCSU Natl. Conf., 79 pp.

  126. McGaughey, W.H. — 1985. Insect resistance to the biological insecticideBacillus thuringiensis.Science 229, 193–195.

    Google Scholar 

  127. McGaughey, W.H. &Whalon, M.E. — 1992. Managing insect resistance toBacillus thuringiensis toxins. —Science, 258, 1451–1455.

    CAS  Google Scholar 

  128. Meeusen, R.L. &Warren, G. — 1989. Insect control with genetically engineered crops. —Annu. Rev. Entomol., 34, 373–81.

    Article  Google Scholar 

  129. Melin, B.E. &Cozzi, E.M. — 1990. Safety to nontarget invertebrates of lepidopteran strains ofBacillus thuringiensis and their β-exotoxins. In: Safety of Microbial Insecticides, (M. Laird, L.A. Lacey &E.W. Davidson, eds) —CRC Press Boca Raton, 149–167.

    Google Scholar 

  130. Miller, L.K. — 1988. Baculoviruses as gene expression vectors. —Annu. Rev. Microbiol., 42, 177–199.

    Article  CAS  PubMed  Google Scholar 

  131. Miller, L.K. — 1995. Genetically engineered insect virus pesticides: present and future. —J. Invertebr. Pathol., 65, 211–216.

    CAS  PubMed  Google Scholar 

  132. Milner, R.J., Soper, R.S., &Lutton, G.G. — 1982. Field release of an Israeli strain of the fungusZoophthora radicans (Brefeld) Batko for biological control ofTherioaphis trifoli (Monell)f. maculata. —J. Aust. Entomol. Soc., 21, 113–118.

    Google Scholar 

  133. Morris, O.N. — 1982. Bacteria as pesticides: Forest applications. In: Microbial and Viral Pesticides, (E. Kurstak, ed). —Marcel Dekker, New York, 239–287.

    Google Scholar 

  134. Moscardi, F. — 1993. Soybean integrated pest management in Brazil. —FAO Plant Protect. Bull., 41, 91–100.

    Google Scholar 

  135. Nielsen-LeRoux, C., Charles, J.-F., Georghiou, G.P., Silva-Filha, M.-H. & Regis, L. — 1994. Mechanism of resistance of mosquito larvae toBacillus sphaericus binary toxin. —Proc. VIth Int. Colloq. Invertebr., Pathol, pp. 201–206.

  136. Ogura, N. — 1993. Control of scarabaeid grubs with an entomogenous nematode,Steinernema kushidai. —Jpn. Agr. Res. Quart., 27, 49–54.

    Google Scholar 

  137. Parkman, J.P., Hudson, W.G., Frank, J.H., Nguyen, K.B. &Smart, G.C. Jr. —1993. Establishment and persistence ofSteinernema scapterisci (Rhabditida: Steinernematidae) in field populations ofScapteriscus spp. mole crickets (Orthoptera: Gryllotalpidae). —J. Entomol. Sci., 28, 182–190.

    Google Scholar 

  138. Peferoen, M. &Van Mellaert, H. — 1991. Engineering of insect resistance in plants withBacillus thuringiensis genes. In: Biotechnology for Biological Control of Pests and Vectors, (K. Maramorosch, ed). —CRC Press, Boca Raton, 95–104.

    Google Scholar 

  139. Petersen, J.J. — 1985. Nematode parasites. In: Biological Control of Mosquitoes, (H. C. Chapman, ed). —Bull. Am. Mosq. Cont. Assoc., 6, 110–122.

  140. Piot, J.-C., Jellis, C.L., Bruyere, T., Bassand, D., Rusche, J. R. andWitt, D.P. — 1990. Construction ofBacillus thuringiensis strains with improved insecticidal performances by genetic exchange and enhancement of the biological activity of a cloned toxin gene byin vitro mutagenesis. In: Pesticides and Alternatives, (J. E. Casida, ed). —Elsevier Science Publishers, B. V., Amsterdam, 149–156.

    Google Scholar 

  141. Poinar, G.O., Jr. — 1979. Nematodes for Biological Control of Insects. —CRC Press, Boca Raton, Florida, 277 pp.

    Google Scholar 

  142. Poinar, G.O., Jr. — 1990. Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Entomopathogenic Nematodes in Biological Control, (R. Gaugler &H. K. Kaya, eds.). —CRC Press, Boca Raton, 23–61.

    Google Scholar 

  143. Poinar, G.O., Jr. — 1991. Genetic engineering of nematodes for pest control. In: Biotechnology for Biological Control of Pests and Vectors. (K. Maramorosch, ed.). —CRC Press, Boca Raton, 77–93.

    Google Scholar 

  144. Poinar, G.O., Jr. — 1992. Nematodes associated with Scarabaeidae. In: Use of Pathogens in Scarab Pest Management, (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 93–109.

    Google Scholar 

  145. Possee, R.D. — 1993. Viral approaches for insect control. In: Advanced Engineered Pesticides, (L. Kim, ed). —Marcel Dekker, New York, 99–112.

    Google Scholar 

  146. Rao, D.R., Mani, T.R., Rajendran, R., Joseph, A.S., Gajanana, A. &Reuben R. — 1995. Development of a high level of resistance toBacillus sphaericus in a field population ofCulex quinquefasciatus from Kochi, India. —J. Am. Mosq. Cont. Assoc., 11, 1–5.

    CAS  Google Scholar 

  147. Reardon, R. & Hajek, A. — 1993.Entomophaga maimaiga in North America: A, Review. —Appal. Inte. Pest Man. Publ. USDA Forest Svc., 22 pp.

  148. Reardon, R., Dubois, N. & McLane, W. — 1994.Bacillus thuringiensis for managing gypsy moth: A review. —Nat. Cen. Forest Hlth. Man. Publ., 32 pp.

  149. Riba, G., Couteaudier, Y., Maurer, P., & Neuvéglise, C. — 1994. Molecular methods offer a new challenge for fungal bioinsecticides. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 16–22.

  150. Roberts, D.W. — 1981. Toxins of entomopathogenic fungi. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H.D. Burges, ed). —Academic Press, London, 441–464.

    Google Scholar 

  151. Roberts, D.W., Fuxa, J.R., Gaugler, R., Goettel, M., Jaques, R., &Maddox, J. — 1991. Use of Pathogens in Insect Control. In: CRC Handbook, of Pest Management in Agriculture, (D. Pimentel (ed))CRC Press, Boca Raton, pp. 243–278.

    Google Scholar 

  152. Rossiter, M.C., Yendol, W.G. &Dubois, N.R. — 1990. Resistance toBacillus thuringiensis in gypsy moth: genetic and environmental causes. —J. Econ. Entomol., 83, 2211–2218.

    Google Scholar 

  153. Shapiro, M. — 1986.In vivo production of baculoviruses. In: The Biology of Baculoviruses. Vol.II Practical Application for Insect Control, (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 31–61.

    Google Scholar 

  154. Shapiro, M. &Dougherty, E.M. — 1993. The use of fluorescent brighteners as activity enhancers for insect pathogenic viruses. In: Pest Management: Biologically Based Technologies, (R.D. Lumsden &J.L. Vaughn, eds). —American Chemical Society, Washington,D.C., 40–46.

    Google Scholar 

  155. Shelton, A.M., Robertson, J.L., Tang, J.D., Perez, C., Eigenbrode, S.D., Preisler, H.K., Wilsey, W.T., Cooley, R.J. — 1993. Resistance of diamondback moth (Lepidoptera: Plutellidae) toBacillus thuringiensis subspecies in the field. —J. Econ. Entomol., 3, 697–705.

    Google Scholar 

  156. Shuler, M.L., Wood, H.A., Granados, R.R., &Hammer, D.A (eds) — 1995. Baculovirus Expression Systems and Biopesticides. —Wiley-Liss Publ., New York, 13–40.

    Google Scholar 

  157. Smits, P.H. — 1994. Biological control of scarabs with entomopathogenic nematodes. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 145–150.

  158. St. Leger, R.J. — 1994. Mycoinsecticides: An opportunity for genetic engineering. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.299–304.

  159. Starnes, R.L., Liu, C.L. &Marrone, P.G. — 1993. History, use, and future of microbial insecticides —Am. Entomol., 39, 83–91.

    Google Scholar 

  160. Steinhaus, E.A. — 1956. Microbial control. The emergence of an idea. —Hilgardia, 26, 107–160.

    Google Scholar 

  161. Steinhaus, E.A. — 1960. Insect pathology: Challenge, achievement, and promise. —Bull. Entomol. Soc. Am., 6, 9–16.

    Google Scholar 

  162. Steinkraus, D.C., Hollingsworth, R.G. &Slaymaker, P.H. — 1995. Prevalence ofNeozygites fresenii (Entomophthorales: Neozygitaceae) on cotton aphids (Homoptera: Aphididae) in Arkansas cotton. —Environ. Entomol., 24, 465–474.

    Google Scholar 

  163. Stone, T.B., Sims, S.R., MacIntosh, S.C., Fuchs, R.L., &Marrone, P.G. —1991. Insect resistance toBacillus thuringiensis. In: Biotechnology for Biological Control of Pests and Vectors, (K. Maramorosch, ed). —CRC Press, Boca Raton, 53–66.

    Google Scholar 

  164. Tabashnik, B.E. — 1992a. Evaluation of synergism amongBacillus thuringiensis toxins. —Appl. Environ. Microbiol., 58, 3343–3346.

    CAS  PubMed  Google Scholar 

  165. Tabashnik, B.E. — 1992b. Resistance risk management: realized heritability of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). —J. Econ. Entomol., 85, 1551–1559.

    Google Scholar 

  166. Tabashnik, B.E. — 1994. Evolution of resistance toBacillus thuringiensis. —Annu. Rev. Entomol., 39, 47–79.

    Article  Google Scholar 

  167. Tabashnik, B.E., Cushing, N.L., Finson, N. &Johnson, M.W. — 1990. Field development of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 83, 1671–1676.

    Google Scholar 

  168. Tabashnik, B.E., Finson, N., Chilcutt, C.F., Cushing, N.L., &Johnson, M.W. —1993. Increasing efficiency of bioassays: evaluating resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 86, 635–644.

    Google Scholar 

  169. Tabashnik, B.E., Finson, N. &Johnson, M.W. — 1991. Managing resistance toBacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 84, 49–55.

    Google Scholar 

  170. Tabashnik, B.E., Finson, N., Johnson, M.W. &Heckel, D.G. — 1995. Prolonged selection affects stability of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 88, 219–224.

    Google Scholar 

  171. Tabashnik, B.E., Groeters, F.R., Finson, N., &Johnson, M.W. — 1994. Instability of resistance toBacillus thuringiensis inPlutella xylostella. —Biocont. Sci. Tech., 4, 419–426.

    Google Scholar 

  172. Tabashnik, B.E., Schwartz, J.M., Finson, N. &Johnson, M.W. — 1992. Inheritance of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). —J. Econ. Entomol., 85, 1046–1055.

    Google Scholar 

  173. Talekar, N.. (ed). — 1992. Diamondback moth and other crucifer pests. —Proc. 2nd Int. Workshop, Taipei, Taiwan: Asian Vegetable Research and Development Center, 603 pp.

  174. Tanada, Y. &Kaya, H.K. — 1993. Insect Pathology. —Academic Press, New York. 666pp.

    Google Scholar 

  175. van Schelt, J. — 1993. Market-driven research and development in biological control. —Pestic. Sci., 37, 405–409.

    Google Scholar 

  176. Waalwijk, C., Dullemans, A. &Maat, C. — 1991. Construction of a bioinsecticidal rhizosphere isolate ofPseudomonas florescens. —FEMS Microbiol. Let., 77, 257–264.

    CAS  Google Scholar 

  177. Weiss, S.A., &Vaughn, J.L. — 1986. Cell culture methods for large-scale propagation of Baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control, (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 63–87.

    Google Scholar 

  178. Weiss, S.A., Dunlop, B.F., Georgis, R., Thomas, D.W., Vail, P.V., Hoffmann, D.F. & Manning, J.S. — 1994. Production of baculoviruses on industrial scale. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp 440–446.

  179. Whalon, M.E. &McGaughey, W.H. — 1993. Insect resistance toBacillus thuringiensis. In: Advanced Engineered Pesticides, (L. Kim, ed). —Marcel Dekker, New York, 215–231.

    Google Scholar 

  180. Whalon, M.E., Miller, D.L., Hollingworth, R.M., Grafius, E.J. &Miller, J.R. —1993. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant toBacillus thuringiensis. —J. Econ. Entomol., 86, 226–233.

    Google Scholar 

  181. Wilson, G.G. — 1981.Nosema fumiferanae, a natural pathogen of a forest pest: potential for pest management. In: Microbial Control of Pests and Plant Diseases 1970–1980, (H. D. Burges, ed). —Academic Press, London, 595–601.

    Google Scholar 

  182. Wilson, M.J., Glen, D.M. &George, S.K. — 1993. The rhabditid nematodePhasmarhadbitis hermaphrodita as a potential biological control agent for slugs. —Biocontrol Sci. Technol., 3, 503–511.

    Google Scholar 

  183. Wood, H.A. — 1991. Development of genetically enhanced baculovirus pesticides. In: Biotechnology for Biological Control of Pests and Vectors, (K. Maramorosch, ed). —CRC Press, Boca Raton, 69–76.

    Google Scholar 

  184. Wood, H.A. — 1994. Recombinant baculovirus pesticides: Protecting our crops and our environment. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.428–429.

  185. Wood, H.A. — 1995. Development and testing of genetically improved baculovirus insecticides. In: Baculovirus Expression Systems and Biopesticides, (M.L. Shuler, H.A. Wood, R.R. Granados &D.A. Hammer, eds). —Wiley-Liss Publ. New York, 91–102.

    Google Scholar 

  186. Wraight, S. &Roberts, D.W. — 1987. Insect control efforts with fungi. —J. Indus. Microbiol., 28, 77–87.

    Google Scholar 

  187. Yap, W.-H., Liu, J.-W., Porter, A.-G. & Thanabalu, T. — 1994. Expression of mosquitocidal toxins in novel gram-negative hosts,Caulobacter andAncylobacter. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp. 239.

  188. Young, S.Y., III &Yearian, W.C. — 1986. Formulation and application of baculoviruses. In: The Biology of Baculoviruses. Vol. II Practical Application for Insect Control, (R.R. Granados &B.A. Federici, eds). —CRC Press, Boca Raton, 157–79.

    Google Scholar 

  189. Zelazny, B., Lolong, A. andPattang, B. — 1992.Oryctes rhinoceros (Coleoptera: Scarabaeidae) populations suppressed by a baculovirus. —J. Invertebr. Pathol., 59, 61–68.

    Google Scholar 

  190. Zimmermann, G. — 1992. Use of the fungus,Beauveria brongniartii, for the control of European Cockchafers,Melolontha spp., in Europe. In: Use of Pathogens in Scarab Pest management, (T.A. Jackson &T.R. Glare, eds). —Intercept, Andover, 199–208.

    Google Scholar 

  191. Zimmermann, G. — 1993. The entomopathogenic fungusMetarhizium anisopliae and its potential as a biocontrol agent. —Pestic. Sci., 37, 375–379.

    Google Scholar 

  192. Zimmermann, G. — 1994. Strategies for the utilization of entomopathogenic fungi. —Proc. VIth Int. Colloq. Invertebr. Pathol., pp.67–73.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lacey, L.A., Goettel, M.S. Current developments in microbial control of insect pests and prospects for the early 21st century. Entomophaga 40, 3–27 (1995). https://doi.org/10.1007/BF02372677

Download citation

Key-Words

  • Microbial control
  • Bacillus thuringiensis
  • resistance
  • bacteria
  • virus
  • fungi
  • nematodes
  • protozoa
  • IPM