, Volume 34, Issue 1, pp 11–18 | Cite as

Effect of parasitoid density on the functional response and sex ratio of a cynipoid hyperparasitoidAlloxysta pleuralis [Hym.: Alloxystidae]

  • R. Singh
  • P. N. Srivastava


Experiment where variable densities (1, 2, 5, 10, 25, 50, 100 and 150) of the parasitoid (5–7 d postparasitised aphids (Aphis craccivora Koch). — parasitised by aphidiid parasitoidTrioxys indicus Subba Rao & Sharma) were exposed to individual hyperparasitoidAlloxysta pleuralis (Cameron) indicated following: (1) with increase of initial host (primary parasitoid) densities the number of hosts hyperparasitised increases sigmoidally reaching to a plateau at 50 host similar to thetype 3 functional response of Holling; the curve was described by a logistic eqution [Nhyp=44.0/(1+exp (4.0–0.16 Np))], (2) greater host mortality was recorded at lower initial host densityes (≤50); (3) the area of discovery of the hyperparasitoid is inversely density-dependent at higher host densities (≥25); and (4) the variation in host number has no significant influence on the sex ratio of F1 offspring of the hyperparasitoid which ranges between 0.56–0.67. The implications of these responses of the hyperparasitoidA. pleuralis are discussed.


Alloxysta pleuralis Trioxys indicus Aphis craccivora functional response area of discovery sex ratio 


L'expérience où des densités variables (1, 2, 5, 10, 25, 50, 100 et 150) du parasitoïde (desAphis craccivora KOCH parasités depuis 5 à 7 jours parTrioxys indicus SUBBA RAO & SHARMA) furent exposées à l'hyperparasitoïdeAlloxysta pleuralis (CAMERON) donnait les résultats suivants (1) avec un accroissement des densités de l'hôte initial (parasitoïde primaire) le nombre d'hôtes hyperparasités augmente selon une sigmoïde atteignant son plafond pour une densité de 50 hôtes, ce qui correspond à la réponse fonctionnelle du type 3 de HOLLING; la courbe avait pour expression l'équation Nhyp=44,0/[1+e(4,0–0,16 Np)]; (2) une mortalité hôte plus forte était enregistrée aux densités de l'hôte initial plus faibles (≤50); (3) l'aire de découverte de l'hyperparasitoïde est inversément dépendant de la densité aux densités hôte plus fortes (≥25); et (4) la variation dans le nombre d'hôtes n'a pas d'influence significantive sur le sex-ratio de la descendance F1 de l'hyperparasitoïde qui s'établit entre 0,56–0,67. Les implications de ces réponses sur l'hyperparasitoïdeA. pleuralis sont discutées.

Mots Clés

Alloxysta pleuralis Trioxys indicus Aphis craccivora réponse fonctionnelle aire de découverte sex-ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arditi, R. — 1983. A unified model of the functional response of predators and parasitoids. —J. Anim. Ecol., 52, 293–303.Google Scholar
  2. Bakker, K., Alphen, J. J. M. van, Batenburg, F. H. W. van, Hoeven, N. vander, Nell, H. W., Strien-van Liempt, W. T. F. H. van &Turlings, T. C. J. — 1985. The function of host discrimination and superparasitisation in parasitoids. —Oecologia, 67, 572–576.CrossRefGoogle Scholar
  3. Bennett, F. D. — 1981 Hyperparasitism in the practice of biological control, pp. 43–49. In: The Role of Hyperparasitism in Biological Control: A Symposium (D. Rosen ed.). —Div. Agric. Sci. Univ. Calif., Berkeley, California.Google Scholar
  4. Charnov, E. L., Hartogh, R. L., Los-den, Jones, W. T. &Assem, J. vanden. —1981. Sex ratio evolution in a variable environment. —Nature, 289, 27–33.CrossRefPubMedGoogle Scholar
  5. Chua, T. H. — 1979. A comparison of searching efficiencies of a parasite and a hyperparasite. —Res. Popul. Ecol., 20, 179–187.Google Scholar
  6. Collins, M. D., Wart, S. A. &Dixon, A. F. G. — 1981. Handling time and the functional response ofAphelinus thompsoni, a predator and parasite of the aphidDrepanosiphum plantanoidis. —J. Anim. Ecol., 50, 479–487.Google Scholar
  7. Dransfield, R. D. — 1979. Aspects of host-parasitoid introductions of two aphid parasitoidsAphidius urticae Haliday andAphidius uzbekistanicus Luzhetzki [Hym.: Aphidiidae]. —Ecol. Entomol. 4, 307–316.Google Scholar
  8. Evenhuis, H. H. — 1972. Studies on cynipoidAlloxystinae. 2. The identity of some species associated with aphids of economic importance. —Entomol. Ber., 32, 210–217.Google Scholar
  9. Fernando, M. H. J. P. &Hassell, M. P. — 1980. Predator-prey response in an acarina system. —Res. Popul. Ecol., 22, 301–322.Google Scholar
  10. Fisher, R. A. — 1958. The Genetical Theory of Natural Selection. —Dover Publ., New York.Google Scholar
  11. Flanders, S. E. — 1967. Deviate-ontogenies in the aphelinid male, [Hymenoptera] associated with the ovipositional behaviour of the parental female. —Entomophaga, 12, 415–427.CrossRefGoogle Scholar
  12. Hartl, D. L. &Brown, S. W. — 1970. The origin of male haploid genetic systems and their expected sex ratio. —Theor. Popul. Biol., 1, 165–190.PubMedGoogle Scholar
  13. Hassell, M. P. — 1971. Mutual interference between searching insect parasites. —J. Anim. Ecol., 40, 473–486.Google Scholar
  14. Hassell, M. P. — 1979. The dynamics of predator-prey interactions, polyphagous predators, competing predators and hyperparasitoids. —Br. Ecol. Soc. Symp., 20, 283–306.Google Scholar
  15. Hassell, M. P. &Rogers, D. J. — 1972. Insect parasite response in the development of population models. —J. Anim. Ecol., 41, 661–676.Google Scholar
  16. Hassell, M. P. &Waage, J. K. — 1984. Host-parasitoid population interactions. —Annu. Rev. Entomol., 29, 89–114.CrossRefGoogle Scholar
  17. Hassell, M. P., Lawton, J. H. &Beddington, J. R. — 1977. Sigmoid functional response by invertebrate predators and parasitoids. —J. Anim. Ecol., 46, 249–262.Google Scholar
  18. Holling, C. S. — 1959. Some characteristics of simple types of predation and parasitism. —Can. Entomol., 91, 385–398.Google Scholar
  19. Legner, E. F. — 1967. Behaviour changes the reproduction ofSpalangia cameroni, E. endius, Muscidifurax raptor andNasonia vitripennis [Hym.: Pteromalidae] at increasing fly host density. —Ann. Entomol. Soc. Amer., 60, 819–826.Google Scholar
  20. Lenteren, J. C. van &Bakker, K. — 1976. Functional response in invertebrates. —Neth. J. Zool., 26, 567–572.Google Scholar
  21. Nicholson, A. J. &Bailey, V. A. — 1935. The balance of animal population. Part I. —Proc. Zool. Soc. London 1935, 551–598.Google Scholar
  22. Murdoch, W. W. &Oaten, A. — 1975. Predation and population stability. —Adv. Ecol. Res., 9, 2–131.Google Scholar
  23. Pandey, R. K., Singh, R., Kumar, A., Tripathi, C. P. M. &Sinha, T. B. — 1982. Bionomics ofTrioxys indicus, an aphidiid parasitoid ofAphis craccivora. 14. Behavioural activities of the parasitoid associated with its functional response. —Z. Angew. Entomol., 93, 164–175.Google Scholar
  24. Rogers, D. J. — 1972. Random search and insect population models. —J. Anim. Ecol., 41, 369–383.Google Scholar
  25. Singh, R. &Sinha, T. B. — 1979. First record ofAlloxysta sp., a hyperparasitoid ofTrioxys (Binodoxys) indicus Subba Rao & Sharma [Hym.: Aphidiidae]. —Curr. Sci., 48, 1008–1009.Google Scholar
  26. Singh, R. &Sinha, T. B. — 1980. Bionomics ofTrioxys (Binodoxys) indicus Subba Rao & Sharma, an aphidiid parasitoid ofAphis craccivora Koch. 5. The extent of hyperparasitism. —Z. Angew. Entomol., 90, 141–146.Google Scholar
  27. Singh, R. &Srivastava, P. N. — 1987a. Bionomics ofAlloxysta pleuralis, a cynipoid hyperparasitoid of an aphidiid parasitoidTrioxys indicus. —Entomol. Exp. Appl., 43, 11–15.CrossRefGoogle Scholar
  28. Singh, R. &Srivastava, P. N. — 1987b. Factors associated with host location byAlloxysta pleuralis (Cameron), a hyperparasitoid ofTrioxys indicus Subba Rao & Sharma [Alloxystidae: Hymenoptera/Aphidiidae: Hymenoptera]. —Entomon, 12, 325–328.Google Scholar
  29. Singh, R. &Srivastava, P. N. — 1987c. Potential host-habitat location byAlloxysta pleuralis (Cameron) [Alloxystidae: Hymenoptera]. —Z. Angew. Zool., 74, 337–341.Google Scholar
  30. Singh, R. &Srivastava, P. N. — 1988. Host-acceptance behaviour ofAlloxysta pleuralis, a cynipoid hyperparasitoid of an aphidiid parasitoidTrioxys indicus on aphids. —Entomol. Exp. Appl., 47, 89–94.CrossRefGoogle Scholar
  31. Sinha, T. B. &Singh, R. — 1979. Studies on the bionomics ofTrioxys (Binodoxys) indicus [Hym.: Aphidiidae]: Effect of population densities on sex ratio. —Entomophaga, 24, 289–294.CrossRefGoogle Scholar
  32. Sullivan, D. J. — 1972. Comparative behaviour and competition between two aphid hyperparasites:Alloxysta victrix andAsaphes califnornicus [Hym.: Cynipidae; Pteromalidae]. —Env. Entomol., 1, 234–244.Google Scholar
  33. Sullivan, D. J. — 1987a. Insect hyperparasitism. —Annu. Rev. Entomol., 32, 49–70.CrossRefGoogle Scholar
  34. Sullivan, D. J. — 1987b. Aphid hyperparasites. In: Aphids, Their Biology, Natural Enemies and Control (P. Harrewigh &A. K. Minks, eds), —Elsevier Press, Amsterdam.Google Scholar
  35. Varley, G. C. &Gradwell, G. R. — 1968. Population models for the winter moth, pp. 132–142. In: Insect Abundance (T.R.E. Southwood ed.). —Blackwell Scientific Publ., Oxford, England.Google Scholar

Copyright information

© Lavoisier Abonnements 1989

Authors and Affiliations

  • R. Singh
    • 1
  • P. N. Srivastava
    • 2
  1. 1.Aphid-Biocontrol Laboratory, Department of ZoologyUniversity of GorakhpurGorakhpurIndia
  2. 2.Department of ZoologyBudha Post Graduate CollegeKushinagarIndia

Personalised recommendations