, Volume 32, Issue 4, pp 425–435 | Cite as

The culture ofEntomophthora muscae (C) Fres. in carrot flies (Psila rosae F.) and the effect of temperature on the pathology of the fungus

  • J. Eilenberg


A method for maintaining anin vivo culture ofEntomophthora muscae (C) Fres. on its original host, adult carrot flies (Psila rosae F.), is described. The lethal time for adult carrot flies was greatly influenced by temperature, both for infected and for uninfected flies. In the range 8.2°C–20.2°C the LT50 for infected flies was about 5.4 times shorter than the estimated average life-span for uninfected flies. The discharge of primary spores was also strongly dependent on temperature. The total number of primary spores discharged per fly at 100% RH and in darkness ranged between 1.2×104 and 9.6×104 with a mean of 5.1×104.


Entomophthora muscae Psila rosae in vivo culture lethal time primary spore discharge 


Eine Methode für einein vivo Kultur vonE. muscae wird beschrieben. Die Nahrung der Pilzkultur bestand aus ihrem natürlichen Wirt, erwachsene Möhrenfliegen (P. rosae). Die Lebensdauer der erwachsenen Möhrenfliegen hängt im hohen Mass von der Temperatur ab, sowohl was infizierte als uninfizierte Fliegen betrifft. Im Interval von 8.2°C–20.2°C war die LT50 für infizierte Fliegen etwa 5.4 mal kürzer als die durchschnittliche Lebensdauer (“LT50”) für uninfizierte Fliegen. Das Abschleuderung der Primärsporen zeigte auch eine starke Temperaturabhängigkeit. Die totale Anzahl von Primärsporen pro Fliege in 100% RH und Dunkelheit abgeschleudert, lag zwischen 1.2×104 und 9.6×104 und Betrug im Mittel 5.1×104.


Entomophthora muscae Psila rosae kulturin vivo Lebensdauer Abschleuderung von Primärsporen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brobyn, P. — 1982. Host invasion and conidium production byEntomophthora muscae. — IIIrd. Int. Coll. Invertebr. Pathol., 6–10 Sept., 1982, Brighton, 225.Google Scholar
  2. Carruthers, R. I. &Haynes, D. L. — 1984. Laboratory transmission andin vivo incubation ofEntomophthora muscae [Entomophthorales: Entomophthoraceae] in the onion fly,Delia antiqua [Diptera: Anthomyiidae]. —J. Invertebr. Pathol., 45, 282–287.Google Scholar
  3. Cohn, F. — 1985.Empusa muscae und die Krankheit der Stubenfliegen. Ein Beitrag zur Lehre von den durch parasitische Pilze characterisierten Epidemiien. —Nov. Actorum Acad. Caes. Leop.-Carol. German. Nat. Cur., 25, 299–360.Google Scholar
  4. Eilenberg, J. — 1985. Relationships between the carrot fly [Psila rosae F.] and its fungal pathogens from Entomophthorales, particularlyEntomophthora muscae (C.) Fres. —Ph. D. Thesis, Dept. Zool., Royal Vet. Agric. Univ., Copenhagen, 109 pp.Google Scholar
  5. Holdom, D. — 1986. Moisture requirements and field occurrence ofEntomophthora planchoniana Cornu. In: Pest control: recent advances and future prospects. (Bailey, P. ed.). —Proc. Fourth Austr. Entomol. Res. Conf., Adelaide, 24–28 Sept., 1984, 368–374.Google Scholar
  6. Keller, S. — 1984.Entomophthora muscae als Artenkomplex. —Mitt. Schweiz. Entomol. Ges., 57, 131–132.Google Scholar
  7. Kramer, J. P. — 1980a. The house-fly mycosis caused byEntomophthora muscae: Influence of relative humidity on infectivity and conidial germination. —J. New-York Entomol. Soc., 88, 236–240.Google Scholar
  8. Kramer, J. P. — 1980b.Entomophthora muscae — moisture as a factor affecting its transmission and conidial germination. —Acta Mycologia, 16, 133–139.Google Scholar
  9. Kramer, J. P. &Steinkraus, D. C. — 1981. Culture ofEntomophthora muscae in vivo and its infectivity for six species of muscoid flies. —Mycopathologia, 76, 139–143.CrossRefGoogle Scholar
  10. MacLeod, D. M., Müller-Kögler, E. &Wilding, N. — 1976.Entomophthora species withE. muscae-like conidia. —Mycologia, 68, 1–29.PubMedGoogle Scholar
  11. Millstein, J. A., Brown, G. C. &Nordin, G. L. — 1982. Microclimatic humidity influence on conidial discharge inErynia sp. [Entomophthorales: Entomophthoraceae], an entomopathogenic fungus on the alfalfa weevil [Coleoptera: Curculionidae]. —Environ. Entomol., 11, 1166–1169.Google Scholar
  12. Milner, R. J. — 1981. Patterns of primary spore discharge ofEntomophthora spp. from the blue green aphid,Acyrtosiphon kondoi. —J. Invertebr. Pathol., 38, 419–425.Google Scholar
  13. Mullens, B. A. — 1985. Host age, sex, and pathogen exposure level as factors in the susceptiblity ofMusca domestica toEntomophthora muscae. —Entomol. Exp. Appl., 37, 33–39.CrossRefGoogle Scholar
  14. Mullens, B. A. &Rodriguez, J. L. — 1985. Dynamics ofEntomophthora muscae [Entomophthorales: Entomophthoraceae] conidial discharge fromMusca domestica [Diptera: Muscidae] cadavers. —Environ. Entomol., 12, 1344–1349.Google Scholar
  15. Rudemo, M. — 1979. Statistik og sandsynlighedslaere med biologisk anvendelse I & II. —DSR, Copenhagen, 251 & 202 pp.Google Scholar
  16. Städler, E. — 1971. An improved mass-rearing method of the carrot fly,Psila rosae [Diptera: Psilidae]. —Can. Entomol., 103, 1033–1038.Google Scholar
  17. Wilding, N. — 1969. Effect of humidity on the sporulation ofEntomophthora aphidis andE. thaxteriana. —Trans. Br. Mycol. Soc., 53, 126–130.Google Scholar

Copyright information

© Lavoisier Abonnements 1987

Authors and Affiliations

  • J. Eilenberg
    • 1
  1. 1.Department of ZoologyRoyal Veterinary and Agricultural UniversityCopenhagenDenmark

Personalised recommendations