Advertisement

Ukrainian Mathematical Journal

, Volume 48, Issue 2, pp 294–313 | Cite as

Strong summability of orthogonal expansions of summable functions. I

  • A. I. Stepanets
  • R. A. Lasuriya
Article
  • 15 Downloads

Abstract

We study the problem of strong summability of Fourier series in orthonormal systems of polynomial-type functions and establish local characteristics of the points of strong summability of series of this sort for summable functions. It is shown that the set of these points is a set of full measure in the region of uniform boundedness of systems under consideration.

Keywords

Fourier Series Full Measure SUMMABLE Function Lebesgue Point Strong Summability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Hardy and J. E. Littlewood, “Sur la serie de Fourier d’une fonction a carre summable,” Comput Revs., 153, 1307–1309 (1913).Google Scholar
  2. 2.
    G. H. Hardy and J. E. Littlewood, “On the strong summability of Fourier series,” Proc. London Math. Soc., 26, 233–286 (1926).Google Scholar
  3. 3.
    T. Carleman, “A theorem concerning Fourier series,” Proc. London Math. Soc., 21, 483–492 (1923).CrossRefGoogle Scholar
  4. 4.
    G. H. Hardy and J. E. Littlewood, “The strong summability of Fourier series,” Fund. Math., 25, 162–189 (1935).Google Scholar
  5. 5.
    J. Marcinkiewicz, “Sur la summability forte des series de Fourier,” J. London Math. Soc., 14, 162–168 (1939).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Zygmund, “On the convergence and summability of power series on the circle of convergence,” Proc. London Math. Soc., 47, 326–350 (1941).CrossRefMathSciNetGoogle Scholar
  7. 7.
    K. Tandori, “Uber die starke summation von Fourierreihen,” Acta Sci. Math., 16, 65–73 (1955).MATHMathSciNetGoogle Scholar
  8. 8.
    K. Tandori, “Berichtigung Arbeit “Uber die starke summation von Fourierreihen,” Acta Sci. Math., 29, No. 3–4 (1968).Google Scholar
  9. 9.
    O. D. Gabisoniya, “On the points of strong summability of Fourier series,” Mat. Zametki, 14, No. 5, 615–628 (1973).MathSciNetGoogle Scholar
  10. 10.
    G. Hardy, J. Littlewood, and G. Polya, Inequalities [Russian translation], Inostr. Lit., Moscow (1948).Google Scholar
  11. 11.
    I. Ya. Novikov and V. A. Podin, “Characterization of the points of p-strong summability of trigonometric Fourier series,” Izv Vyssh. Uchebn. Zaved., 9, 58–62 (1988).Google Scholar
  12. 12.
    K. Tandori, “Uber die Cesaroche summierbarkeit der orthogonalen Polynomreihen. II,” Acta. Math. Sci. Hung., 5, No. 3–4, 236–253 (1954).Google Scholar
  13. 13.
    G. Alexits, Problems of Convergence of Orthogonal Series [Russian translation], Inostr. Lit., Moscow (1963).MATHGoogle Scholar
  14. 14.
    G. Alexits and D. Kralik, “Uber Approximation im starken Sinne,” Acta Scient. Math. Szeged., 26, No. 1–2., 93–101 (1965).MATHMathSciNetGoogle Scholar
  15. 15.
    A. Zygmund, Trigonometric Series [Russian translation], Mir, Moscow 1965.MATHGoogle Scholar
  16. 16.
    N. K. Bari, Trigonometric Series [in Russian], Fizmatgiz, Moscow 1961.Google Scholar
  17. 17.
    A. Ya. Ismailov, “On the estimation of derivatives of polynomials of many variables,” Doki Akad. Nauk SSSR, 4, 239–243 (1956).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. I. Stepanets
  • R. A. Lasuriya

There are no affiliations available

Personalised recommendations