Advertisement

Ukrainian Mathematical Journal

, Volume 48, Issue 2, pp 181–188 | Cite as

Global solutions of a two-dimensional initial boundary-value problem for a system of semilinear magnetoelasticity equations

  • O. M. Botsenyuk
Article

Abstract

We prove the theorem on the existence and uniqueness of global solutions of a system of semilinear magnetoelasticity equations in a two-dimensional space.

Keywords

Bilinear Form Russian Translation Global Solution Besov Space Interpolation Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. M. Botsenyuk, “On the solvability of an initial boundary-value problem for a system of semilinear magnetoelasticity equations,” Ukr. Mat. Zh., 44, No. 9, 1181–1185 (1992).CrossRefMathSciNetGoogle Scholar
  2. 2.
    J.-L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Applications [Russian translation], Mir, Moscow 1971.Google Scholar
  3. 3.
    J.-L. Lions and E. Magenes, Non-Homogeneous Boundary-Value Problems and Applications, Springer, Berlin 1972.Google Scholar
  4. 4.
    P. Grisvard, “Caracterisation de quelques espaces d’interpolation,” Arch. Ration. Mech. Anal., 25, 40–63 (1967).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Triebel, Interpolation Theory. Function Spaces. Differential Operators [Russian translation], Mir, Moscow 1980.MATHGoogle Scholar
  6. 6.
    J. Bergh and J. Lofstrom, Interpolation Spaces. An Introduction [Russian translation], Mir, Moscow 1980.Google Scholar
  7. 7.
    H. Engler, “An alternative proof of the Brezis-Wainger inequality,” Commun. Part. Different. Equat., 14, No. 4, 5451–5544 (1989).MathSciNetGoogle Scholar
  8. 8.
    H. Brezis and T. Gallouet, “Nonlinear Schrodinger evolution equations,” J. Nonlin. Anal, 4, No. 4, 677–681 (1980).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    H. Brezis and S. Wainger, “A note on limiting cases of Sobolev imbeddings,” Commun. Part. Different. Equat., 5, 773–789 (1980).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • O. M. Botsenyuk

There are no affiliations available

Personalised recommendations