Advertisement

Somatic Cell and Molecular Genetics

, Volume 22, Issue 2, pp 119–134 | Cite as

Characterization of somatic cell hybrids exhibiting extinction of AFP, Albumin and an AFP-HPRT Transgene

  • Michael J. Keherly
  • Ching-Chyuan Hsieh
  • Jerome L. McCombs
  • Linda S. Merryman
  • John Papaconstantinou
Article
  • 18 Downloads

Abstract

We utilized an AFP-HPRT transgene, i.e. the HPRT coding sequences under the regulation of AFP enhancer and promoter sequences, to localize the AFP extinguisher locus in intertypic somatic cell hybrids (hepatoma X fibroblast). This hybrid gene construct, which directly links AFP regulation to a reversibly selective gene, enabled the selection of stably transfected cells which express AFP, as well as cells showing extinction of AFP. Mouse hepatoma cells stably transfected with and expressing the transgene were fused to human fibroblasts, and the resulting somatic cell hybrids were characterized using Southern, Northern and karyotypic analyses. That several hybrids exhibited the proper extinction of AFP, AFP-HPRT and albumin suggests coregulation of these genes by an extinguisher. Segregant lines derived from these hybrids were selected for the loss of extinguisher activity and for reexpression of the transgene. Karyotypic analysis of hybrid and segregant lines, exhibiting proper AFP, albumin and AFP-HPRT phenotypes, revealed that the presence of human chromosome 7 was most closely associated with the AFP-extinguished state. The hybrids generated in these studies now make it possible to isolate the sequences responsible for AFP and albumin extinction.

Keywords

Albumin Somatic Cell Code Sequence Hepatoma Cell Promoter Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Gourdeau, H., and Fournier, R.E.K. (1990).Annu. Rev. Cell Biol. 6:69–94.CrossRefPubMedGoogle Scholar
  2. 2.
    Boshart, M., Nitsch, D., and Schütz, G. (1993).Trends in Genetics 9:240–245.CrossRefPubMedGoogle Scholar
  3. 3.
    Killary, A.M., and Fournier, R.E.K. (1984).Cell 38:523–534.CrossRefPubMedGoogle Scholar
  4. 4.
    Lem, J., Chin, A.C., Thayer, M.J., Leach, R.J., and Fournier, R.E.K. (1988).Proc. Natl. Acad. Sci. U.S.A. 85:7302–7306.PubMedGoogle Scholar
  5. 5.
    Jones, K.W., Shapero, M.H., Chevrette, M., and Fournier, R.E.K. (1991).Cell 66:861–872.CrossRefPubMedGoogle Scholar
  6. 6.
    Boshart, M., Weih, F., Nichols, M., and Schütz, G. (1991).Cell 66:849–859.CrossRefPubMedGoogle Scholar
  7. 7.
    Nichols, M., Weih, F., Schmid, W., DeVack, C., Kowenz-Leutz, E., Luckow, B., Boshart, M., and Schütz, G. (1992).EMBO J 11:3337–3346.PubMedGoogle Scholar
  8. 8.
    Chin, A.C., and Fourmer, R.E.K. (1989).Mol. Cell. Biol. 9:3736–3743.PubMedGoogle Scholar
  9. 9.
    Petit, C., Levilliers, J., Ott, M.-O., and Weiss, M.C. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:2561–2565.PubMedGoogle Scholar
  10. 10.
    Hamon-Benais, C., Delagebeaudeuf, C., Jeremiah, S., Lecoq, O., and Cassio, D. (1994).Exp. Cell Res. 213:295–304.CrossRefPubMedGoogle Scholar
  11. 11.
    Cereghini, S., Yaniv, M., and Cortese, R. (1990).EMBO J. 9:2257–2263.PubMedGoogle Scholar
  12. 12.
    Papaconstantinous, J., Rabek, J.P., and Zhang, D.-E. (1990).Dev. Growth Differ. 32:205–216.Google Scholar
  13. 13.
    Szpirer, J., and Szpirer, C. (1975).Cell 6:53–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Szpirer, C., and Szpirer, J. (1976).Differentiation 5:97–99.PubMedGoogle Scholar
  15. 15.
    Papaconstantinous, J., Wong, E., Ratrie, H., Szpirer, C., and Szpirer, J. (1982).Somat. Cell Genet. 8:363–376.Google Scholar
  16. 16.
    Church, W.K., Papaconstantinou, J., Kwan, S.-W., Poliard, A., Szpirer, C., and Szpirer, J. (1984).Somat. Cell Molec. Genet. 10:541–545.PubMedGoogle Scholar
  17. 17.
    Widen, S.G., and Papaconstantinou, J. (1987).Mol. Cell. Biol. 7:2606–2609.PubMedGoogle Scholar
  18. 18.
    Brennand, J., Konecki, D.S., and Caskey, C.T. (1983).J. Biol. Chem. 258:9593–9596.PubMedGoogle Scholar
  19. 19.
    Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual., Cold Spring Harbor, New York.Google Scholar
  20. 20.
    Ausubel, F.M., Brant, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (1989).Current Protocols in Molecular Biology. (Greene Publishing Associates and Wiley-Interscience) New York, New York.Google Scholar
  21. 21.
    Southern, P.J., and Berg, P. (1982).J. Mol. Applied Genet. 1:327–341.Google Scholar
  22. 22.
    Gorman, C.M., Moffat, L.F., and Howard, B.H. (1982).Mol. Cell. Biol. 2:1044–1051.PubMedGoogle Scholar
  23. 23.
    Sanger, F., Nicklen, S., and Coulson, A.R. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:5463–5467.PubMedGoogle Scholar
  24. 24.
    Szpirer, C., and Szpirer, J. (1975).Differentiation 4:85–91.PubMedGoogle Scholar
  25. 25.
    Graham, F.L., and van der Eb, A.J. (1973).Virology 52:456–467.CrossRefPubMedGoogle Scholar
  26. 26.
    Hirt, B. (1967).J. Mol. Biol. 26:365–369.CrossRefPubMedGoogle Scholar
  27. 27.
    Brown, D.B., Hanks, S.K., Murphy, E.C. Jr., and Rao, P.N. (1985).Exp. Cell Res. 156:251–259.CrossRefPubMedGoogle Scholar
  28. 28.
    Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979).Biochemistry 18:5294–5299.CrossRefPubMedGoogle Scholar
  29. 29.
    Carter, K.C., Cooper, R., Papaconstantinou, J., and Ritchie, D.G. (1989).J. Biol. Chem. 264:515–519.PubMedGoogle Scholar
  30. 30.
    Mifflin, R.C., Moller, P.C., and Papaconstantinou, J. (1988).Somat. Cell Molec. Genet. 14:553–566.PubMedGoogle Scholar
  31. 31.
    Criswold, P.M., and Bishop, J.O. (1981).Gene 15:225–235.Google Scholar
  32. 32.
    Strauss, W.M. (1989). Preparation of Genomic DNA From Mammalian Tissue. InCurrent Protocols In Molecular Biology, (R.E. Kingston, D.D. Moore, J.D. Seidman, J.A. Smith, and K. Struhl, eds.), pp. 2.2.1–2.2.3. Greene Publishing Associates and Wiley-Interscience. John Wiley and Sons, New York, New York.Google Scholar
  33. 33.
    Cooper, R., Herzog, C.E., Li, M.-L., Zapisek, W.F., Hoyt, P.R., Ratrie, H. III and Papaconstantinou, J. (1984).Nucleic Acids Res. 12:6575–6586.PubMedGoogle Scholar
  34. 34.
    Moorhead, P.S., Nowell, P.C., Mellman, W.J., Battips, D.M., and Hungerford, D.A. (1960).Exp. Cell Res. 20:613–616.CrossRefPubMedGoogle Scholar
  35. 35.
    Natarajan, A.T., and Raposa, T. (1974).Humangenetik 21:221–226.PubMedGoogle Scholar
  36. 36.
    Kucherlapati, R.S., Hilwig, I., Gropp, A., and Ruddle, F.H. (1975).Humangenetik 27:9–14.PubMedGoogle Scholar
  37. 37.
    Pinkel, D., Straume, T., and Gray, J.W. (1986).Proc. Natl. Acad. Sci. U.S.A. 83:2934–2398.PubMedGoogle Scholar
  38. 38.
    Keherly, M.J., Papaconstantinou, J., and McCombs, J.L. (1993).Exp. Cell Res. 205:361–364.CrossRefPubMedGoogle Scholar
  39. 39.
    Huang, M.T.F., and Gorman, C.M. (1990).Mol. Cell Biol. 10:1805–1810.PubMedGoogle Scholar
  40. 40.
    Pellicer, A., Wigler, M., Axel, R., and Silverstein, S. 91978).Cell 14:133–141.CrossRefPubMedGoogle Scholar
  41. 41.
    Hsiung, N., Roginski, R.S., Henthorn, P., Smithies, O., Kucherlapati, R., and Skoultchi, A.I. (1982).Mol. Cell. Biol. 2:401–411.PubMedGoogle Scholar
  42. 42.
    Palmiter, R.D., Chen, H.Y., and Brinster, R.L. (1982).Cell 29:701–710.CrossRefPubMedGoogle Scholar
  43. 43.
    Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C., and Evans, R.M. (1982).Nature (London)300:611–615.CrossRefPubMedGoogle Scholar
  44. 44.
    Wigler, M., Silverstein, S., Lee, L.-S., Pellicer, A., Cheng, Y.-C., and Axel, R. (1977).Cell 11:223–232.CrossRefPubMedGoogle Scholar
  45. 45.
    Croce, C.M., Aden, D., and Koprowski, H. (1975).Proc. Natl. Acad. Sci. U.S.A. 72:1397–1400.PubMedGoogle Scholar
  46. 46.
    Schafer, A.J., Bulla, G.A., and Fournier, R.E.K. (1994).Somat. Cell Molec. Genet. 20:195–213.PubMedGoogle Scholar
  47. 47.
    Thayer, M.J., and Fournter, R.E.K. (1989).Mol. Cell. Biol. 9:2837–2846.PubMedGoogle Scholar
  48. 48.
    Schafer, A.J., and Fournier, R.E.K. (1992).Somat. Cell Molec. Genet. 18:571–581.PubMedGoogle Scholar
  49. 49.
    Nitsch, D., Boshart, M., and Schütz, G. (1993).Genes and Development 7:308–319.PubMedGoogle Scholar
  50. 50.
    Shapero, M.H., Langston, A.A., and Fournier, R.E.K. (1994).Somat. Cell Molec. Genet. 20:215–231.PubMedGoogle Scholar
  51. 51.
    McKusick, V.A. (1988).Mendelian Inheritance in Man. 8th edition, pp. cxvi. The Johns Hopkins University Press, Baltimore, Maryland.Google Scholar
  52. 52.
    Laurent-Winter, C., Fougere-Deschatrette, C., and Weiss, M.C. (1994).Differentiation 55:225–232.CrossRefPubMedGoogle Scholar
  53. 53.
    Camper, S.A., and Tilghman, S.M. (1989).Genes Dev. 3:537–546.PubMedGoogle Scholar
  54. 54.
    Kuo, C.J., Conley, P.B., Chen, L., Sladek, F.M., Darnell, J.E. Jr., and Crabtrec, G.R. (1992).Nature 355:457–461.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Michael J. Keherly
    • 1
    • 2
  • Ching-Chyuan Hsieh
    • 1
  • Jerome L. McCombs
    • 1
    • 3
  • Linda S. Merryman
    • 3
  • John Papaconstantinou
    • 1
  1. 1.Department of Human Biological Chemistry and GeneticsUniversity of Texas, Medical Branch at Galveston
  2. 2.Department of Surgery/Division of NeurosurgeryUniversity of Texas, Medical Branch at Galveston
  3. 3.Department of Pediatrics/Diviston of CytogeneticsUniversity of Texas, Medical Branch at Galveston

Personalised recommendations