Somatic Cell and Molecular Genetics

, Volume 22, Issue 2, pp 87–103 | Cite as

New mutations and phenotypes associated with glutamate and aspartate transport in Chinese hamster ovary (CHO-K1) cells

  • Robert P. IgoJr.
  • John F. Ash
Article

Abstract

Two new Chinese hamster ovary cell (CHO-K1) mutants lacking amino acid transport System XAG activity were isolated by [3H]aspartate suicide selection. These null mutants, Dd-B6 and Dd-B7, were analyzed by somatic cell hybridization, along with previously described partial-function mutants, Ed-A1 and Ed-B8. With respect to System XAG activity, all four mutations fell into a single complementation group. By quantitative assay, the mutations in Ed-A1 and Ed-B8 behaved as simple recessives in fusions with wild type cells, while those in Dd-B6 and Dd-B7 were codominant. We have discovered that Ed-A1 and Ed-B8 are highly permeable to smal neutral molecules. This high permeability phenotype was dominant to wild-type. Northern, Southern, and Western analyses indicated that System XAG in CHO is not closely related to any of the three well characterized glutamate transporters represented by GLT-1, EAAC1 or GLAST.

Keywords

Glutamate Wild Type Cell Chinese Hamster Ovary Cell Chinese Hamster Ovary Null Mutant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Christensen, H.N. (1984).Biochim. Biophys. Acta 779:255–269.PubMedGoogle Scholar
  2. 2.
    Bannai, S., and Kitamura, E. (1980).J. Biol Chem. 255:2372–2376.PubMedGoogle Scholar
  3. 3.
    Bannai, S., and Tateishi, N. (1986).J. Membrane Biol. 89:1–8.CrossRefGoogle Scholar
  4. 4.
    Nicholls, D., and Atwell, D. (1990).Trends Pharmacol. Sci. 11:462–468.CrossRefPubMedGoogle Scholar
  5. 5.
    Pines, G., Danbolt, N.C., Bjørås, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., and Kanner, B.I. (1992).Nature 360:464–467.CrossRefPubMedGoogle Scholar
  6. 6.
    Storck T., Schulte, S., Hofmann, K., and Stoffel, W. (1992).Proc. Natl. Acad. Sci. U.S.A. 89:10955–10959.PubMedGoogle Scholar
  7. 7.
    Kanai, Y., and Hediger, M.A. (1992).Nature 360:467–471.CrossRefPubMedGoogle Scholar
  8. 8.
    Arriza, J.L., Fairman, W.A., Wadiche, J.I., Murdoch, G.H., Kavanaugh, M.P., and Amara, S.G. (1994).J. Neurosci. 14:5559–5569.PubMedGoogle Scholar
  9. 9.
    Inoue, K., Sakaitani, M., Shimada, S., and Tohyama, M. (1995).Mol. Brain Res. 28:343–348.CrossRefPubMedGoogle Scholar
  10. 10.
    Kawakami, H., Tanaka, K., Nakayama, T., Inoue, K., and Nakamura, S. (1994).Biochem. Biophys. Res. Commun.,199:171–176.CrossRefPubMedGoogle Scholar
  11. 11.
    Manfras, B.J., Rudert, W.A., Trucco, M., and Boehm, B.O. (1994)Biochim. Biophys. Acta 1195:185–188.PubMedGoogle Scholar
  12. 12.
    Mukainaka, Y., Tanaka, K., Hagiwara, T., and Wada, K. (1994).Biochim. Biophys. Acta 1244:233–237.Google Scholar
  13. 13.
    Shashidharan, P., and Plaitakis, A. (1993).Biochim. Biophys. Acta 1216:161–164.PubMedGoogle Scholar
  14. 14.
    Shashidharan, P., Wittenberg, I., and Plaitakis, A. (1994).Biochim. Biophys. Acta 1191:393–396.PubMedGoogle Scholar
  15. 15.
    Shashidharan, P., Huntley, G.W., Meyer, T., Morrison, J.H., and Platakis, A. (1994).Brain Res. 662:245–250.CrossRefPubMedGoogle Scholar
  16. 16.
    Tanaka, K. (1993).Neuroscience Research 16:1490–153.CrossRefGoogle Scholar
  17. 17.
    Tanaka, K. (1993).Neurosci. Lett. 159:183–186.CrossRefPubMedGoogle Scholar
  18. 18.
    Amara, S.G., and Arriza, J.L. (1993).Curr. Opin. Neurobiol. 3:337–344.CrossRefPubMedGoogle Scholar
  19. 19.
    Holliday, R. (1990).Philos. Trans. R. Soc. London (Biol.) B326:329.Google Scholar
  20. 20.
    Holliday, R., and Ho, T. (1990).The New Biologist 2:719–726.PubMedGoogle Scholar
  21. 21.
    Ash, J.F., Igo, R.P., Jr., Morgan, M., and Grey, A. (1993).Som. Cell. Mol. Gen.,19:231–243.Google Scholar
  22. 22.
    Gazzola, G.C., Dall'Asta, V., Franchi-Gazzola, R., and White, M.F. (1981).Anal. Biochem. 115:368–374.CrossRefPubMedGoogle Scholar
  23. 23.
    DeBusk, W.E., and Ash, J.F. (1993).Som. Cell. Mol. Gen. 19:331–345.Google Scholar
  24. 24.
    Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. (1985).Anal. Biochem. 150:76–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Marquardt, D.W. (1963).J. Soc. Ind. Appl. Math. 11:431–441.CrossRefGoogle Scholar
  26. 26.
    Ash, J.F., and Igo, R.P., Jr. (1993).Biochim. Biophys. Acta 1149:109–118.PubMedGoogle Scholar
  27. 27.
    Kennett, R.H. (1979).Methods Enzymol. 58:345–359.PubMedGoogle Scholar
  28. 28.
    Tsukamoto, T., Yokota, S., and Fujiki, Y. (1990).J. Cell Biol. 110:651–660.CrossRefPubMedGoogle Scholar
  29. 29.
    MacDonald, R.J., Swift, G.H., Przybyla, A.E., and Chirgwin, J.M. (1987).Methods Enzymol. 152:219–227.PubMedGoogle Scholar
  30. 30.
    Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, Plainview, New York).Google Scholar
  31. 31.
    Church, G.M., and Gilbert, W. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:1991–1995.PubMedGoogle Scholar
  32. 32.
    Danbolt, N.C., Pines, G., and Kanner, B.I. (1990).Biochemistry 29:6734–6740.CrossRefPubMedGoogle Scholar
  33. 33.
    Ash, J.F. (1975).J. Biol. Chem. 250:3560–3566.PubMedGoogle Scholar
  34. 34.
    Hawkins, P.T., Cooke, F., and Stephens, L.R. (1994).Hoefer News 94–93:2.Google Scholar
  35. 35.
    Lehre, K.P., Levy, L.M., Ottersen, O.P., Storm-Mathisen, J., and Danbolt, N.C. (1995).J. Neurosci. 15:1835–1853.PubMedGoogle Scholar
  36. 36.
    Vasquez, B., Ishibashi, F., and Howards, B.V. (1982).In Vitro 18:643–649.PubMedGoogle Scholar
  37. 37.
    Bass, R., Hedegaard, H.B., Dillehay, L., Moffett, J., and Englesberg, E. (1981).J. Biol. Chem. 256:10259–10266.PubMedGoogle Scholar
  38. 38.
    Moffett, J., and Englesberg, E. (1984).Mol. Cell. Biol. 4:799–808.PubMedGoogle Scholar
  39. 39.
    Fairman, W.A., Vandenberg, R.J., Arriza, J.L., Kavanaugh, M.P., and Amara, S.G. (1995).Nature 375:599–603.CrossRefPubMedGoogle Scholar
  40. 40.
    Holliday, R. (1991).Mutat. Res. 250:351–363.PubMedGoogle Scholar
  41. 41.
    Holliday, R., and Ho, T. (1991).Som. Cell. Mol. Gen. 17:537–542.Google Scholar
  42. 42.
    Nyce, J. (1991).Som. Cell. Mol. Gen. 17:543–550.Google Scholar
  43. 43.
    Igo, R.P., Jr., and Ash, J.F. (1995).Biochim. Biophys. Acta,1233:153–162.PubMedGoogle Scholar
  44. 44.
    Dall'Asta, V., Gazzola, G.C., Franchi-Gazzola, R., Bussolati, O., Longo, N., and Guidotti, G.G. (1983).J. Biol. Chem. 258:6371–6379.PubMedGoogle Scholar
  45. 45.
    Kao, F.-T., Chasin, L., and Puck, T.T. (1969).Proc. Natl. Acad. Sci. U.S.A. 64:1284–1291.PubMedGoogle Scholar
  46. 46.
    Marger, M.D., and Saier, M.H., Jr. (1993).Trends Biochem. Sci. 18:13–20.CrossRefPubMedGoogle Scholar
  47. 47.
    Reithmeier, R.A.F. (1994).Curr. Opin. Cell Biol. 6:583–594.CrossRefPubMedGoogle Scholar
  48. 48.
    Kanner, B.I. (1993).FEBS Lett. 325:95–99.CrossRefPubMedGoogle Scholar
  49. 49.
    Kanai, Y., Smith, C.P., and Hediger, M.A. (1994).FASEB J. 8:1450–1459.Google Scholar
  50. 50.
    Agre, P., Brown, D., and Nielsen, S. (1995).Curr. Opin. Cell Biol. 7:472–483.CrossRefPubMedGoogle Scholar
  51. 51.
    Knepper, M.A. (1994).Proc. Natl. Acad. Sci. U.S.A. 91:6255–6258.PubMedGoogle Scholar
  52. 52.
    Ishibashi, K., Sasaki, S., Fushimi, K., Uchida, S., Kuwahara, M., Saito, H., Furukawa, T., Nakajima, K., and Yamaguchi, Y. (1994).Proc. Natl. Acad Sci. U.S.A. 91:6269–6273.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Robert P. IgoJr.
    • 1
  • John F. Ash
    • 1
  1. 1.Department of Neurobiology and Anatomy, School of MedicineUniversity of UtahSalt Lake City Utah

Personalised recommendations