Skip to main content
Log in

Dynamic fracture and scale effects (survey)

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. G. Ivanov and V. N. Mineev, “Scale effects in fracture,” Fiz. Goreniya Vzryva, No. 5 (1979).

  2. A. G. Ivanov, “Possible development of the unified fracture theory,” High Energy Rate Fabrication: Proc. of X Intern. Conf., Ljubljana, Yugoslavia (1989).

  3. J. R. Irwin, “Linear fracture mechanics, the transition from ductile to brittle fracture, and methods of inspecting fractures,” in: Fracture-Toughness Testing of High-Strength Metallic Materials in Plane Strain [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  4. W. Weiss and S. Yukawa, “Critical appraisal of fracture mechanics,” in: Applied Problems of Fracture Toughness [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  5. A. G. Ivanov, “Local and integral energy approaches to the problem of fracture,” Applied Problems of Strength and Ductility: All-Union Inter-Institute Symposium, Gorky State University (1990), Vol. 46.

  6. G. P. Cherepanov, “Fracture of pipelines,” Dokl. Akad. Nauk SSSR,272, No. 3 (1983).

  7. A. G. Ivanov, “The nature of catastrophic pipeline failures,” Ibid.Dokl. Akad. Nauk SSSR,285, No. 2 (1985).

    Google Scholar 

  8. A. G. Fedorenko, V. I. Tsypkin, A. G. Ivanov, et al., “Features of the dynamic deformation and fracture of cylindrical glass-plastic shells subjected to internal shock loading,” Mekhan. Kompoz. Mat., No. 1 (1983).

  9. A. G. Ivanov and V. A. Ogorodnikov, “Do brittle and ductile materials differ in cleavage?,” Prikl. Mekh. Tekh. Fiz., No. 1 (1992).

  10. A. G. Ivanov, “Cleavage in a quasi-acoustic approximation,” Fiz. Goreniya Vzryva, No. 3 (1975).

  11. D. E. Grady, “The spall strength of condensed matter,” J. Mech. Phys. Solids,36, No. 3 (1988).

    Google Scholar 

  12. A. M. Molodets and A. N. Dremin, “Thermoactivational interpretation of cleavage,” Dokl. Akad. Nauk SSSR,265, No. 6 (1982).

    Google Scholar 

  13. A. G. Ivanov, “Phenomenology of fracture and cleavage,” Fiz. Goreniya Vzryva, No. 2 (1985).

  14. A. G. Ivanov, V. A. Ryzhanskii, V. I. Tsypkin, et al., “Experimental study of the effect of scale on the strength of a high-pressure boiler with internal blast loading,” Ibid.,Fiz. Goreniya Vzryva, No. 3 (1981).

  15. A. G. Ivanov, S. A. Novikov, and V. A. Sinitsyn, “Scale effect in the explosion of closed steel vessels,” Ibid.,Fiz. Goreniya Vzryva, No. 1 (1972).

  16. A. G. Ivanov, V. N. Mineev, and E. S. Tyun'kin, “Sudden collapse of cylindrical steel shells,” Izv. Akad. Nauk SSSR Mekh. Tverd. Tela, No. 2 (1982).

  17. A. G. Ivanov, “Features of the explosive deformation and fracture of pipes,” Probl. Prochn., No. 11 (1976).

  18. V. K. Borisevich, V. P. Sabel'kin, et al., “Dynamic characteristics of certain metals and alloys,” Impul'snaya Obrabotka Metallov Davleniem, No. 9 (1981).

  19. M. Stelly, J. Legrand, and R. Dormeval, “Some metallurgical aspects of dynamic expansion of shells,” Shock Waves and High-Strain-Rate Phenomen. Metals: Proc. Int. Conf., Albuquerque, 1980 Plenum Press, N. Y. (1981).

    Google Scholar 

  20. A. G. Ivanov, L. I. Kochkin, V. F. Novikov, et al., “High-rate fracture of thin-walled pipes of mild steel,” Prikl. Mekh. Tekh. Fiz., No. 1 (1983).

  21. Atul H. Chokshi and Marc A. Meyers, “The prospects for superplasticity at high strain rates: preliminary considerations and an example,” Superplasticity,24, No. 4 (1990).

  22. A. G. Ivanov, “Dynamic fracture of objects in the region of large plastic strains,” Prikl. Mekh. Tekh. Fiz., No. 2 (1986).

  23. D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys.,53, No. 1 (1982).

    Google Scholar 

  24. M. E. Kipp and D. E. Grady, “Dynamic fracture growth and interaction in one dimension,” J. Mech. Phys. Solids,33, No. 4 (1985).

    Google Scholar 

  25. D. E. Grady and M. E. Kipp, “The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids,” J. Mech. Phys. Solids,35, No. 1 (1987).

    Google Scholar 

  26. D. E. Grady and M. M. Hightower, “Natural fragmentation of exploding cylinders,” Proc. Int. Conf. on Shock-Wave and High-Strain-Rate Phen. in Mat., San Diego (1990).

  27. A. G. Ivanov, “Dynamic rupture of thin-walled cylindrical shells,” Paper pres. at the 3rd Intern. Conf. on Mech. and Phys. Beh. of Mater. under Dynamic Loading, Strasbourg, France (1991); J. Phys. IV, Vol. 1 (1991).

  28. A. G. Ivanov, “Role of inertial and elastic forces in dynamic fracture in the plastic region,” Dokl. Akad. Nauk SSSR,321, No. 1 (1991).

    Google Scholar 

  29. Yu. N. Tyunayev, V. N. Mineev, and N. N. Popov, “Strength of solid and coiled shells under internal shock loading,” Probl. Prochn., No. 1 (1978).

  30. F. P. Belyankin and G. I. Dybenko, “Effect of strain rate and loading rate on the strength of laminated plastic specimens of different sizes,” Zavod. Lab., No. 10 (1963).

  31. V. I. Tsypkin and A. G. Ivanov, “Scale effect in the impulsive failure of coiled shells,” Probl. Prochn., No. 6 (1981).

  32. A. G. Ivanov, V. N. Mineev, V. I. Tsykin, et al., “Plastic deformation, fracture, and the scale effect in the blast loading of steel pipes,” Fiz. Goreniya Vzryva, No. 4 (1974).

  33. A. G. Ivanov, “Brittle strength of thin-walled vessels,” Probl. Prochn., No. 6 (1988).

  34. V. A. Ryzhanskii, V. N. Mineev, A. G. Ivanov, et al., “Fracture of water-filled glass-epoxy cylinders when subjected to internal shock loading,” Mekh. Polim., No. 2 (1978).

  35. A. G. Ivanov and V. I. Tsypkin, “Deformation and fracture of glass-fiber-reinforced plastic shells under extreme loads,” Mekhanika Kompozitnykh Materialov, No. 1 (1987).

  36. A. G. Fedorenko, M. A. Syrunin, and A. G. Ivanov, “Dynamic, strength of shells of oriented fiber composites subjected to blast loading,” Prikl. Mekh. Tekh. Fiz., No. 1 (1993).

  37. E. M. Shevandin, I. A. Razov, R. E. Reshetnikova, et al., “Nature of the scale effect in the fracture of metals,” Dokl. Akad. Nauk SSSR,113, No. 5 (1957)

    Google Scholar 

  38. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  39. R. L. Coble and N. M. Parikh, “Fracture of polycrystalline ceramics,” in: Fracture [Russian translation], Vol. 1, Pt. 7, Mashinostroenie, Moscow (1977).

    Google Scholar 

  40. L. S. Lifshitz, “Calculation of the stability of pipelines against brittle fracture,” Stroit. Truboprovodov, No. 3 (1968).

  41. V. Z. Parton, Fracture Mechanics. From Theory to Practice [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  42. Murray J. Bond, “Practical examples of the design of vessels with allowance for resistance to brittle fracture,” Fracture [Russian translation], Vol. 5, Mashinostroenie, Moscow (1977).

    Google Scholar 

  43. Hiro Adachi, Methods of Designing Artillery Pieces [Russian translation], ibid.

  44. E. Bessel, W. Clark, and W. Prail, “Designs of steel structures with large cross sections by the methods of fracture mechanics,” in: New Methods of Evaluating the Resistance of Metals to Brittle Fracture [Russian translation], Mir. Moscow (1972).

    Google Scholar 

  45. D. Drucker, “Macroscopic principles of a theory of brittle fracture,” in: Fracture [Russian translation], Vol. 1, Mir, Moscow (1973).

    Google Scholar 

  46. A. G. Ivanov and V. A. Ryzhanskii, “Safety factors and the reliability of large structures,” Prikl. Mekh. Tekh. Fiz., No. 1 (1994).

  47. G. P. Cherepanov, “Brittle strength of pressure vessels,” Prikl. Mekh. Tekh. Fiz., No. 6 (1969).

  48. V. A. Ogorodnikov and A. G. Ivanov, “Dependence of the resistance of metals to cleavage on the amplitude of a shock-wave load,” Fiz. Goreniya Vzryva, No. 1 (1992).

  49. W. J. Stronge, Ma Xiaoqing, and Zhao Lanting, “Fragmentation of explosively expanded steel cylinders,” Int. J. Mech. Sci.,31, No. 11/12 (1989).

    Google Scholar 

  50. V. A. Ogorodnikov, A. G. Ivanov, V. N. Luchinin, et al., “Nature of the scale effect in high-rate fracture (cleavage),” ibid.Int. J. Mech. Sci., No. 6 (1993).

  51. N. A. Makhutov, S. V. Serikov, and A. G. Kotousov, “Fracture of pipelines in service,” Probl. Prochn., No. 12 (1992).

Download references

Authors

Additional information

Arzamas-16. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 35, No. 3, pp. 116–131, May–June, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.G. Dynamic fracture and scale effects (survey). J Appl Mech Tech Phys 35, 430–442 (1994). https://doi.org/10.1007/BF02369884

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02369884

Keywords

Navigation