Models for the buckling of bars on an elastic base

  • N. S. Astapov


Mathematical Modeling Mechanical Engineer Industrial Mathematic Elastic Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. P. Timoshenko, “On the longitudinal buckling of bar in an elastic medium”,Izv. S.-Peterburg. Politekh. Inst.,7, 145–157 (1907).Google Scholar
  2. 2.
    I. I. Blekhman, A. D. Myshkis, and Ya. G. Panovko,Mechanics and Applied Mathematics. Logic and Peculiarities of Mathematical Applications [in Russian], Nauka, Moscow (1990).Google Scholar
  3. 3.
    N. S. Astapov, “Postbuckling behavior of a bar on a nonlinearly elastic base”, in:Dynamics of Continuous Media [in Russian], Institute of Hydrodynamics, Novosibirsk,103 (1991), pp. 15–29.Google Scholar
  4. 4.
    N. S. Astapov and V. M. Kornev, “Postbuckling behavior of an ideal bar on an elastic base”,Prikl. Mekh. Tekh. Fiz.,35, No. 2, 130–142 (1994).MathSciNetGoogle Scholar
  5. 5.
    J. M. T. Thompson,Instabilities and Catastrophes in Science and Engineering, Wiley-Interscience, New York (1982).Google Scholar
  6. 6.
    N. Damil and M. Potier-Ferry, “A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures”,Int. J. Eng. Sci.,28, No. 9, 943–957 (1990).MathSciNetGoogle Scholar
  7. 7.
    N. S. Astapov, A. G. Demehkin, and V. M. Kornev, “Buckling of a bar on an elastic base”,Prikl. Mekh. Tekh. Fiz.,35, No. 5, 106–112 (1994).Google Scholar
  8. 8.
    T. Poston and I. Stuart,Catastrophe Theory and Its Applications, Pitman, San Francisco (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • N. S. Astapov

There are no affiliations available

Personalised recommendations