Asymptotic expansion of the green function of an internal-wave equation fort→∞

  • V. A. Borovikov
Article

Keywords

Mathematical Modeling Mechanical Engineer Asymptotic Expansion Industrial Mathematic Green Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Erdelyi,Asymptotic Expansions, Dover Publ., Inc., New York (1956).Google Scholar
  2. 2.
    A. P. Anyutin and V. A. Borovikov, “Evolution of localized disturbances in a stratified fluid with a variable Brunt-Väisälä frequency,”Prikl. Mat. Mekh.,50, No. 5, 863–867 (1986).MathSciNetGoogle Scholar
  3. 3.
    V. A. Borovikov, “The field of a point source of internal waves in a half-space with a variable Brunt-Väisälä frequency,”Prikl. Mat. Mekh.,52, No. 4, 688–692 (1988).MATHMathSciNetGoogle Scholar
  4. 4.
    V. A. Borovikov, “The asymptotics of the Green function for an internal-wave equation fort→∞,”Dokl. Akad. Nauk SSSR,313, No. 2, 313–316 (1990).MATHMathSciNetGoogle Scholar
  5. 5.
    Yu. Z. Miropol'skii,Dynamics of Internal Gravity Waves in the Ocean [in Russian], Gidrometeoizdat, Leningrad (1981).Google Scholar
  6. 6.
    J. B. Keller and J. S. Papadakis (eds.),Wave Propagation and Underwater Acoustics, Springer-Verlag, Heidelberg (1977).Google Scholar
  7. 7.
    M. Abramovits and I. Stigan,Handbook on Special Functions [in Russian], Nauka, Moscow (1979).Google Scholar
  8. 8.
    I. M. Ryzhik and I. S. Gradshtein,Tables of Integrads, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  9. 9.
    M. V. Fedoryuk,The Saddle-Point Method [in Russian], Nauka, Moscow (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. A. Borovikov

There are no affiliations available

Personalised recommendations