Stability analysis of steady supersonic flow regimes past infinite wedge

  • A. M. Blokhin
  • A. D. Birkin


Mathematical Modeling Mechanical Engineer Stability Analysis Industrial Mathematic Supersonic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Courant and K. D. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York (1948).Google Scholar
  2. 2.
    A. M. Blokhin and E. I. Romenskii, “Stability of the limiting steady-state solution for flow past a circular cone,” Izv Sib. Otd. Akad. Nauk SSSR,3, No. 13, 87–97 (1978).Google Scholar
  3. 3.
    V. V. Rusanov and A. A. Sharakshane, “Investigation of a linearized time-dependent model of flow past an infinite wedge,” IPM Preprint No. 103 (1980).Google Scholar
  4. 4.
    A. M. Blokhin, “Correctness of the linear mixed problem of supersonic flow past a wedge,” Sib. Mat. Zh.,29, No. 5, 48–58 (1988).MATHMathSciNetGoogle Scholar
  5. 5.
    A. M. Blokhin, Energy Integrals with Applications to Problems of Gas Dynamics [in Russian], Nauka, Novosibirsk (1986).Google Scholar
  6. 6.
    A. I. Rylov, “On possible regimes of flow past tapering bodies of finite thickness at arbitrary supersonic freestream velocities,” Prikl. Mat. Mekh.,55, No. 1, 96–99 (1991).MathSciNetGoogle Scholar
  7. 7.
    A. A. Nikol'skii, “On plane vortex gas flows,” Theoretical Research in Fluid and Gas Mechanics: Proceedings of the Central Aerohydrodynamic Institute [in Russian], No. 2122, 74–85 (1981).Google Scholar
  8. 8.
    B. M. Bulakh, Nonlinear Conical Gas Flows [in Russian], Nauka, Moscow (1970).Google Scholar
  9. 9.
    B. L. Rozhdestvenski, “Refinement of the theory of supersonic flow of a nonviscous past a wedge,” Mat. Model.,1, No. 8, 99–102 (1989).Google Scholar
  10. 10.
    Shih-I. Pai, Introduction to the Theory of Compressible Flow, D. Van Nostrand Company, Inc., Princeton, N.J. (1959).Google Scholar
  11. 11.
    A. N. Tikhonov and A. A. Samarskii Equations of Mathematical Physics [in Russian], Nauka, Moscow (1972) [English translation of earlier edition: Pergamon Press, New York-Oxford (1963)].Google Scholar
  12. 12.
    S. V. Iordanskii, “Stability of a steady-state shock wave,” Prikl. Mat. Mekh.,21, No. 4, 465–472 (1974).MathSciNetGoogle Scholar
  13. 13.
    M. A. Lavrent'ev and B. I. Shabat, Methods of Functions of Complex Variables [in Russian], Nauka, Moscow (1988).Google Scholar
  14. 14.
    V. A. Kondratyev, “Boundary value problems for elliptic equations in regions with conical or corner points,” Tr. Mosk. Mat. Obshch.,16, 209–292 (1967).Google Scholar
  15. 15.
    K. I. Babenko, Foundations of Numerical Analysis [in Russian], Nauka, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. M. Blokhin
  • A. D. Birkin

There are no affiliations available

Personalised recommendations