Optimum forms of three-dimensional bodies for penetration of dense media

  • N. A. Ostapenko
  • V. I. Romanchenko
  • G. E. Yakunina


Mathematical Modeling Mechanical Engineer Industrial Mathematic Dense Medium Optimum Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Ostapenko and G. E. Yakunina, “Bodies of least resistance moving in media in the presence of a locality law,” Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, No. 1, 95–106 (1992).MathSciNetGoogle Scholar
  2. 2.
    N. V. Banichuk, V. M. Petrov, and F. L. Chernous'ko, “Method of local variations for variational problems with non-additive functionals,” Zh. Vychisl. Mat. Mat. Fiz., No. 5, 548–557 (1969).Google Scholar
  3. 3.
    A. Ya. Sagomonyan, Penetration [in Russian], Izd. MGU, Moscow (1974).Google Scholar
  4. 4.
    A. Ya. Sagomonyan, “Penetration of a slab by a hard thin projectile,” Vestn. Mosk. Univ. Mat. Mekh., No. 5, 104–110 (1975).MATHGoogle Scholar
  5. 5.
    M. P. Efimov, Course in Artillery Shells [in Russian], Oborongiz, Moscow (1939).Google Scholar
  6. 6.
    F. F. Vitman and V. A. Stepanov, “Effect of strain rate on the resistance of metals to deformation at impact velocities of 102–103 m/sec,” in: Certain Problems of the Strength of Solids [in Russian], Izd. An SSSR, Moscow-Leningrad (1959).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • N. A. Ostapenko
  • V. I. Romanchenko
  • G. E. Yakunina

There are no affiliations available

Personalised recommendations