Mathematical modeling of elastic phase transitions

  • I. A. Kaliev


Mathematical Modeling Phase Transition Mechanical Engineer Industrial Mathematic Elastic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Falk, “Ginsburg-Landau theory of static domain walls in shape-memory alloys,”Z. Phys.,51, 177–185 (1983).CrossRefADSGoogle Scholar
  2. 2.
    F. Falk, “Elastic phase transitions and nonconvex energy functions,”Free Boundary Problems: Theory and Applications,1, 45–59 (1988) (Pitman Res. Notes in Math. Ser. 185).Google Scholar
  3. 3.
    F. Falk and P. Konopka, “Three-dimensional Ladau theory describing the martensitic phase transitions of shape memory alloys,”J. Phys.-Condens. Matter., No. 2, 61–77 (1990).ADSGoogle Scholar
  4. 4.
    J. D. van der Waals,Die Kontinuität des gasförmigen und flüssigen Zustandes, Thesis, Leiden (1873).Google Scholar
  5. 5.
    J. D. van der Waals, “The thermodynamic theory of capillarity flow under the hypothesis of a continuous variation of density,”Verhandel. Konink. Akad. Weten., Sect., 1,1, No 8 (1893).Google Scholar
  6. 6.
    L. D. Landau, “On the phase transition theory,”Zh. Eksp. Tekh. Fiz.,7, No. 7, 19–37 (1937).Google Scholar
  7. 7.
    V. L. Ginzburg, “Some remarks on second-order phase transitions and macroscopic ferroelectrics theory,”Fiz. Tverd. Tela,2, No. 9, 2031–2043 (1960).MathSciNetGoogle Scholar
  8. 8.
    A. F. Devonshire, “Theory of ferroelectrics,”Adv. Phys.,3, No. 10, 85–130 (1954).CrossRefADSMATHGoogle Scholar
  9. 9.
    M. Niezgodka and J. Sprekels, “Existence of solutions for a mathematical model of structural phase transitions in shape memory alloys,”Math. Meth. Appl. Sci., No. 10, 197–223 (1988).MathSciNetGoogle Scholar
  10. 10.
    J. Sprekels, “Global existence for thermomechanical processes with nonconvex free energies of Ginsburg-Landau form,”J. Math. Anal. Appl.,141, 333–348 (1989).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    L. V. Ovsyannikov,Introduction to Continuum Mechanics [in Russian], Novosibirsk (1977), Part 2.Google Scholar
  12. 12.
    D. J. Korteweg, “Sur la forme que prennent les equations des movement des fluides si l'on tient compte des forces capillaires par des variations de densite,”Arch. Neerl. Sci. Exactes. Nat., Ser. II, No. 6, 1–24 (1901).MATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • I. A. Kaliev

There are no affiliations available

Personalised recommendations