Skip to main content

Advertisement

Log in

Anti-islet cell and anti-insulin antibody production by CD5+ and CD5- B lymphocytes in IDDM

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

Although CD5+B lymphocytes are mostly committed to the production of polyreactive natural autoantibodies, CD5+B lymphocytes committed to the production of somatically mutated and monoreactive high-affinity IgM autoantibodies have been also shown. Increased proportions of CD5+B lymphocytes in some autoimmune diseases, including insulin-dependent diabetes mellitus (IDDM), have been noticed. The present study was undertaken to analyse the differences between CD5+ and CD5-B lymphocyte subsets for production of IDDM-related autoantibodies, i.e. anti-human insulin antibodies (IA) and anti-human islet cell antibodies (ICA). For this purpose, Epstein-Barr Virus (EBV)-transformation of FACS cell-sorted CD5+ and CD5-B lymphocytes and unfractionated enriched B lymphocytes from nine IDDM patients treated exclusively with recombinant human insulin, and from four healthy control subjects was performed; a mean of 102–216 microcultures with a mean of 1,000–2,333 cells/microculture for each B-lymphocyte fraction and individual was established. Data show that both CD5+ and CD5-B-lymphocyte subsets from either normal subjects or from IDDM patients receiving recombinant human insulin, contain B lymphocytes committed to the production of IA-IgM as a common element of their repertoire. In contrast, cells committed to the production of IA-IgG were only detected among the CD5-B lymphocyte subset from some IDDM patients. Only one microculture, out of a total of 6,211 screened (from control subjects and patients), in the CD5-B-cell subset from a recently-diagnosed IDDM patient, was found to produce ICA-IgMλ. This might suggest that the frequency of circulating B lymphocytes committed to the production of ICA is very low even in IDDM patients bearing serum ICA. EBV-transformed B cells producing the ICA-IgMψ were stabilized and cloned by somatic hybridization technique. This ICA-IgMψ human monoclonal antibody, designated HY1-MB91, is not polyreactive, but shows a restricted reactivity with human pancreatic islets, failing to react with other human tissues including cerebellar cortex, and lacking rheumatoid factor and anti-DNA antibody activities. It also lacks reactivity with pancreatic islets from other mammalian species (rat, mouse and monkey) as well as with other rat tissues, including cerebellar cortex. The antigen recognized by HY1-MB91 antibody in human islet cells is a cytoplasmic component mostly found in beta cells. [Diabetologia (1995) 38:62–72]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EBV:

Epstein-Barr virus

IDDM:

insulin-dependent diabetes mellitus

GAD:

glutamic acid decarboxylase

IA:

anti-insulin antibodies

ICA:

islet cell antibodies

mAbs:

monoclonal antibodies

NAA:

natural autoantibodies

PBMC:

peripheral blood mononuclear cells

RF:

Rheumatoid factor

References

  1. Castaño L, Eisenbarth GS (1990) Type 1 diabetes: a chronic autoimmune disease of human, mouse and rat. Ann Rev Immunol 8: 647–679

    Google Scholar 

  2. Srikanta S, Ricker AT, McCulloch DK, Soeldner JS, Eisenbarth GS, Palmer JP (1986) Autoimmunity to insulin, β cell dysfunction and development of insulin-dependent diabetes mellitus. Diabetes 35: 139–142

    CAS  PubMed  Google Scholar 

  3. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PGF, Gamble DR (1985) In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 313: 353–360

    CAS  PubMed  Google Scholar 

  4. Bottazzo GF, Florien-Christensen A, Doniach D (1974) Islet cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet II: 1279–1283

    Google Scholar 

  5. Palmer JP, Asplin CM, Clemons P, Lyon K, Iapati O, Raghu P, Paquette TL (1983) Insulin autoantibodies in insulin-dependent diabetes before insulin treatment. Science 222: 1337–1339

    CAS  PubMed  Google Scholar 

  6. Thai A-Ch, Eisenbarth GS (1993) Natural history of IDDM. Diabetes Rev 1: 1–14

    Google Scholar 

  7. Avrameas S (R) Natural autoantibodies: from “horror autotoxicus” to “gnothi seauton”. Immunol Today 154: 154–159

  8. Kantor AB, Herzenberg LA (1993) Origin of murine B cell lineages. Ann Rev Immunol 11: 501–538

    Article  CAS  Google Scholar 

  9. Hayakawa K, Hardy RR, Parks DR, Herzenberg LA (1983) The “Ly-1 B” cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med 157: 202–218

    Article  CAS  PubMed  Google Scholar 

  10. Kantor AB (1991) The development and repertoire of B1 cells (CD5 B cells). Immunol Today 12: 389–391

    CAS  PubMed  Google Scholar 

  11. Hayakawa K, Hardy RR (1988) Normal, autoimmune, and malignant CD5+B cells: the Ly-1 B lineage? Ann Rev Immunol 6: 197–218

    CAS  Google Scholar 

  12. Kipps TJ (1989) The CD5+B cell. Adv Immunol 47: 117–185

    CAS  PubMed  Google Scholar 

  13. Casali P, Notkins AL (1989) Probing the human B-cell repertoire with EBV: polyreactive antibodies and CD5+B lymphocytes. Ann Rev Immunol 7: 513–535

    CAS  Google Scholar 

  14. Hardy RR (1992) Variable gene usage, physiology and development of Ly-1+(CD5+) B cells. Curr Opin Immunol 4: 181–185

    Article  CAS  PubMed  Google Scholar 

  15. Kipps T, Carson DA (1993) Autoantibodies in chronic lymphocytic leukemia and related systemic autoimmune diseases. Blood 81: 2475–2487

    CAS  PubMed  Google Scholar 

  16. Plater-Zyberk C, Maini RN, Lam K, Kennedy TD, Janossy G (1985) A rheumatoid arthritis B cell subset expresses a phenotype similar to that in chronic lymphocytic leukemia. Arthritis Rheum 28: 971–976

    CAS  PubMed  Google Scholar 

  17. Dauphinée M, Tovar Z, Talal N (1988) B cells expressing CD5 are increased in Sjögren's syndrome. Arthritis Rheum 31: 642–647

    PubMed  Google Scholar 

  18. Iwatani Y, Amino N, Kaneda T et al. (1989) Marked increase of CD5+B cells in hyperthyroid Graves' disease. Clin Exp Immunol 78: 196–200

    CAS  PubMed  Google Scholar 

  19. Nicoletti F, Meroni PL, Barcellini W et al. (1989) Enhanced percentage of CD5+B lymphocytes in newly diagnosed IDDM patients. Immunol Lett 23: 211–216

    Google Scholar 

  20. Muñoz A, Gallart T, Viñas O, Gomis R (1991) Increased CD5-positive B lymphocytes in type 1 diabetes. Clin Exp Immunol 83: 304–308

    PubMed  Google Scholar 

  21. Schatz DA, Lang F, Cantor AB et al. (1991) CD5+B lymphocytes in high-risk islet cell-antibody-positive and newly diagnosed IDDM subjects. Diabetes 40: 1314–1318

    CAS  PubMed  Google Scholar 

  22. Sidman CHL, Shultz LD, Hardy RR, Hayakawa K, Herzenberg LA (1986) Production of immunoglobulin isotypes by Ly-1+B cells in viable motheaten and normal mice. Science 232: 1423–1425

    CAS  PubMed  Google Scholar 

  23. Painter C, Monestier M, Bonin B, Bona AC (1986) Functional and molecular studies of V genes expressed in autoantibodies. Immunol Rev 94: 75–98

    CAS  PubMed  Google Scholar 

  24. Casali P, Burastero SE, Nakamura M, Inghirami G, Notkins AL (1987) Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1+ B-cell subset. Science 236: 77–81

    CAS  PubMed  Google Scholar 

  25. Hardy RR, Hayakawa K, Shimizu M, Yamasaki K, Kishimoto T (1987) Rheumatoid factor secretion from human Leu-1+B cells. Science 236: 81–83

    CAS  PubMed  Google Scholar 

  26. Casali P, Burastero S, Balow JE, Notkins AL (1989) High-affinity antibodies to ssDNA are produced by CD5-B cells in systemic lupus erythematosus patients. J Immunol 143: 3476–3483

    CAS  PubMed  Google Scholar 

  27. Shutte MEM, Ebeling SB, Akkermans KE, Gmelig-Meyling FHJ, Logtenberg T (1991) Antibody specificity and immunoglobulin VH gene utilization of human monoclonal CD5+B cell lines. Eur J Immunol 21: 1115–1121

    Google Scholar 

  28. Burastero SE, Casali P, Wilder RL, Notkins AL (1988) Monoreactive high affinity and polyreactive low affinity rheumatoid factors are produced by CD5+B cells from patients with rheumatoid arthritis. J Exp Med 168: 1979–1992

    Article  CAS  PubMed  Google Scholar 

  29. Mantovani L, Wilder RL, Casali P (1993) Human rheumatoid B-1a (CD5+B) cells make somatically hypermutated high affinity IgM rheumatoid factors. J Immunol 151: 473–488

    CAS  PubMed  Google Scholar 

  30. Van der Heijden RWJ, Bunschoten H, Hoek A et al. (1991) A human CD5+B cell clone that secretes an idiotype-specific high-affinity IgM monoclonal antibody. J Immunol 146: 1503–1508

    PubMed  Google Scholar 

  31. Kaushik A, Mayer R, Fidanza V, Zaghouani H, Lim A, Bona C, Dighiero G (1990) Ly1 and V-gene expression among hybridomas secreting natural autoantibody. J Autoimmunity 3: 687–700

    CAS  Google Scholar 

  32. Kasaian MT, Ikemnatsu H, Casali P (1992) Identification and analysis of a novel CD5-B lymphocyte subset producting natural antibodies. J Immunol 148: 2690–2695

    CAS  PubMed  Google Scholar 

  33. National Diabetes Data Group (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 29: 1039–1057

    Google Scholar 

  34. Bergua M, Solé J, Marion G et al. (1987) Prevalence of islet cell antibodies, insulin antibodies and hyperglycaemia in 2291 school-children. Diabetologia 30: 724–726

    Article  CAS  PubMed  Google Scholar 

  35. Peig M, Gomis R, Ercilla G, Casamitjana R, Bottazzo GF, Pujol-Borrell R (1989) Correlation between residual β-cell function and islet cell antibodies in newly diagnosed type 1 diabetes. Diabetes 38: 1396–1401

    CAS  PubMed  Google Scholar 

  36. Anegón I, Vilella R, Gallart T et al. (1986) B-C1, B-C2, B-C3: monoclonal antibodies against B cell differentiation antigens. In: Reinherz EL, Haynes BF, Nadler LM, Berstein ID (eds) Human B lymphocytes. Vol 2. Springer-Verlag, New York, Berlin, pp 121–139

    Google Scholar 

  37. Ling NR, MacLennan ICM, Mason DY (1987) B cell-antigens: new and previously defined clusters. In: McMichael AJ, Beverley PCL, Cobbold S et al. (eds) Oxford University Press. Oxford, New York, pp 302–335

    Google Scholar 

  38. Casali P, Nakamura M, Ginsberg-Fellner F, Notkins AL (1990) Frequency of B cells committed to the production of antibodies to insulin in newly diagnosed patients with insulin-dependent diabetes mellitus and generation of high affinity human monoclonal IgG to insulin. J Immunol 144: 3741–3747

    CAS  PubMed  Google Scholar 

  39. De La Fuente MA, Egile C, Pereira A et al. (1994) Molecular characterization of a monoclonal IgMK(GAS) anti-Gd cold agglutinin (CA). Its co-existence with a monoclonal IgG3K(GAS) without CA activity that might be clonally related to IgMGAS. Blood 83: 1310–1322

    PubMed  Google Scholar 

  40. Gallart T, Bladé J, Martínez Quesada J, Sierra J, Rozman C, Vives J (1985) Multiple myeloma with monoclonal IgG and IgD of lambda type exhibiting, under treatment, a shift from mainly IgG to mainly IgD. Immunology 55: 45–57

    CAS  PubMed  Google Scholar 

  41. Lozano F, Parés A, Borche L, Plana M, Gallart T, Rodés J, Vives J (1988) Autoantibodies against nuclear envelope-associated proteins in primary biliary cirrhosis. Hepatology 8: 930–938

    CAS  PubMed  Google Scholar 

  42. Vives-Pi M, Somoza N, Vargas F, Armengol P, Sarri Y, Wu JY, Pujol-Borrell R (1993) Expression of glutamic acid decarboxylase (GAD) in the α, β and δ cells of normal and diabetic pancreas: implications for the pathogenesis of type I diabetes. Clin Exp Immunol 92: 391–396

    CAS  PubMed  Google Scholar 

  43. Randen I, Pasqual V, Victor K, Thompson KM, Forre O, Capra JD, Natvig JB (1993) Synovial IgG rheumatoid factors show evidence of an antigen-driven immune repertoire compared to IgM rheumatoid factors. Eur J Immunol 23: 1220–1225

    CAS  PubMed  Google Scholar 

  44. Casali P, Prabhakar BS, Notkins AL (1988) Characterization of multireactive autoantibodies and identification of Leu-1+B lymphocytes as cells making antibodies binding multiple self and exogenous molecules. Intern Rev Immunol 3: 17–45

    CAS  Google Scholar 

  45. Satoh J, Prabhakar BS, Haspel MV, Ginsberg-Fellner F, Notkins AL (1983) Human monoclonal autoantibodies that react with multiple endocrine organs. New Engl J Med 309: 217–220

    CAS  PubMed  Google Scholar 

  46. Punnonen J, Aversa GG, Vandekerckhove B, Roncarolo M-G, de Vries JE (1992) Induction of isotype switching and Ig production by CD5+and CD10+human fetal B cells. J Immunol 148: 3398–3404

    CAS  PubMed  Google Scholar 

  47. Braun J, Krall WJ, Krall WJ, Clark ME, Gowan III HL, Chen U (1988) Inducible Ig heavy chain switching in an IgM+Ly-1 B cell line. Evidence for a state of switch commitment. J Mol Cell Immunol. 4: 105–119

    CAS  PubMed  Google Scholar 

  48. Sarfati M, Luo H, Delespesse G (1989) IgE synthesis by chronic lymphocytic leukemia. J Exp Med 170: 1775–1780

    Article  CAS  PubMed  Google Scholar 

  49. Houdayer M, Bouvet JP, Wolff A et al. (1993) Simultaneous presence, in one serum, of four monoclonal antibodies that might correspond to different steps in a clonal evolution from polyreactive to monoreactive antibodies. J Immunol 150: 311–319

    CAS  PubMed  Google Scholar 

  50. Van Es JH, Gmelig Myeling FHJ, Van der Akker WRM, Aaanstoot H, Derksen RHWM, Logtenberg T (1991) Somatic mutations in the variable regions of a human IgG anti-double-stranded DNA autoantibody suggest a role for antigen in the induction of systemic lupus erythematosus. J Exp Med 173: 461–470

    PubMed  Google Scholar 

  51. Winker TH, Fehr H, Kalden JR (1992) Analysis of immunoglobulin variable region genes from human IgG anti-DNA hybridomas. Eur J Immunol 22: 1719–1728

    Google Scholar 

  52. Caligaris-Cappio F, Riva M, Tesio L, Schena M, Gaidano G, Bergui L (1989) Human normal CD5+B lymphocytes can be induced to differentiate to CD5-B lymphocytes with germinal center cell features. Blood 73: 1259–1263

    CAS  PubMed  Google Scholar 

  53. Banchereau J, Rousset F (1992) Human B lymphocytes: phenotype, proliferation and differentiation. Adv Immunol 52: 125–262

    CAS  PubMed  Google Scholar 

  54. Stewart AK, Huang C, Long AA, Stollar BD, Schwartz RS (1992) VH-gene representation in autoantibodies reflects the normal human B-cell repertoire. Immunol Rev 128: 101–122

    CAS  PubMed  Google Scholar 

  55. Thomas JW (1993) V region diversity in human anti-insulin antibodies. Preferential use of a VHIII gene subset. J Immunol 150: 1375–1382

    CAS  PubMed  Google Scholar 

  56. Davis SN, Thompson CJ, Peak M, Brown MD, Alberti KGMM (1992) Effects of human insulin on insulin binding antibody production in nondiabetic subjects. Diabetes Care 15: 124–126

    CAS  PubMed  Google Scholar 

  57. Richter W, Endl J, Eiermann TH et al. (1992) Human monoclonal islet cell antibodies from a patient with insulin-dependent diabetes mellitus reveal glutamate decarboxylase as the target antigen. Proc Natl Acad Sci USA 89: 8467–8471

    CAS  PubMed  Google Scholar 

  58. Einsenbarth GS, Linnenbach A, Jackson R, Scearce R, Croce CM (1982) Human hybridomas secreting anti-islet autoantibodies. Nature 300: 264–267

    Google Scholar 

  59. Nayak RC, Omar OAK, Rabizadeh A, Srikanta S, Eisenbarth GS (1985) “Cytoplasmic” islet cell antibodies: evidence that the target antigen is a sialoglycoconjugate. Diabetes 34: 617–619

    CAS  PubMed  Google Scholar 

  60. Golman PG, Nayak RC, Campbell IL, Eisenbarth GS (1988) Binding of cytoplasmic islet cell antibodies is blocked by human pancreatic glycolipid extracts. Diabetes 37: 645–652

    Google Scholar 

  61. Richter W, Shi Y, Baekkeskov S (1993) Autoreactive epitopes defined by diabetes-associated human monoclonal antibodies are localized in the middle and C-terminal domains of the smaller form of glutamate decarboxylase. Proc Natl Acad Sci USA 90: 2832–2836

    CAS  PubMed  Google Scholar 

  62. Richter W, Eiermann TH, Endl J et al. (1993) Human monoclonal islet specific autoantibodies share features of islet cell and 64 kDA antibodies. Diabetologia 36: 785–790

    Article  CAS  PubMed  Google Scholar 

  63. Inman LR, McAllister CT, Chen L et al. (1993) Autoantibodies to the GLUT-2 glucose transporter of B cells in insulin-dependent diabetes mellitus of recent onset. Proc Natl Acad Sci USA 90: 1281–1284

    CAS  PubMed  Google Scholar 

  64. Solimena M, De Camilli P (1993) Spotlight on a neuronal enzyme. Nature 366: 15–17

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, A., Gallart, T., Usac, E.F. et al. Anti-islet cell and anti-insulin antibody production by CD5+ and CD5- B lymphocytes in IDDM. Diabetologia 38, 62–72 (1995). https://doi.org/10.1007/BF02369354

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02369354

Key words

Navigation