Skip to main content
Log in

Comparative hydrodynamic evaluation of variants of cavapulmonary anastomosis

  • Research, Design, and Technology
  • Published:
Biomedical Engineering Aims and scope

Conclusions

  1. 1.

    Coaxial and angular shift of anastomosis have significant effects on the flow rate distribution, size and location of recirculation zones, and zones of vortex formation or congestion.

  2. 2.

    To reduce the hemodynamic complications caused by blood flow distortion, the CCPA anastomosis is recommended to be made at an angle of 60±5° to the RPA axis and with a 0.5d±0.1d axial shift.

  3. 3.

    If the anastomosis is shifted by more than 0.5d, a steady state macrovortex is formed at the central area of the CCPA. The vortex is a closed recirculation zone (three-dimensional coil) capable of complete obstruction of the blood vessel lumen.

  4. 4.

    Inadequately applied anastomosis may cause blood flow destructurization, increase the probability of hemolysis, ischemia, and thrombogenesis, and provoke postoperative arrhythmia caused by flow rate pulsations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. E. V. Len'ko, E. E. Litasova, V. V. Pai, et al., Proc. 2nd All-Russian Congr. of Cardiovascular Surgeons, St. Petersburg (1993), pp. 12–13.

  2. V. P. Podzolkov, M. R. Chiaureli, S. B. Zaets, et al., Grudnaya Serd.-Sosud. Khir., No. 6, 11–16 (1990).

    Google Scholar 

  3. H. S. Bossiouny, S. White, S. Glagov, et al., J. Vasc. Surg.,15, 708–716 (1992).

    Google Scholar 

  4. H. M. Crawshaw, W. C. Quist, E. Serralach, et al., Arch. Surg.,15, 1280–1284 (1980).

    Google Scholar 

  5. R. S. Keynton, S. E. Rittgers, and M. C. Shu, J. Biomech. Eng.,113, 458–463 (1991).

    Google Scholar 

  6. J. K. Kirklin, E. H. Blackstone, J. W. Kirklin, et al., J. Thorac. Cardiovasc. Surg.,92, 1049–1064 (1986).

    Google Scholar 

  7. M. R. de Leval, P. Kilner, M. Gewilling, and C. Bull, J. Thorac. Cardiovasc. Surg.,96, 682–692 (1988).

    Google Scholar 

  8. D. D. Mair, V. J. Rice, D. J. Hagler, et al., Circulation,72, No. 2, 88–92 (1985).

    Google Scholar 

  9. E. J. Puga, J. Thorac. Cardiovasc. Surg.,98, 150–154 (1989).

    Google Scholar 

  10. S. E. Rittgers and G. H. Bhambhani, Ultrasound Med. Biol.,19, 257–267 (1993).

    Article  Google Scholar 

  11. V. S. Sottiurai, J. S. T. Yao, W. R. Flinn, and R. C. Baston, Surgery,94, No. 6, 809–817 (1983).

    Google Scholar 

  12. V. S. Sottiurai, S. L. Sue, E. L. Feinberg, et al., Eur. J. Vasc. Surg.,2, 245–256 (1988).

    Article  Google Scholar 

  13. V. S. Sottiurai, J. S. T. Yao, R. C. Baston, et al., Ann. Vasc. Surg.,3, 26–33 (1989).

    Google Scholar 

  14. N. H. Staalsen, M. Ulrich, et al., J. Vasc. Surg.,21, 460–471 (1995).

    Article  Google Scholar 

  15. S. S. White, C. K. Zarins, D. P. Giddens, et al., J. Biomech. Eng.,115, 104–111 (1993).

    Google Scholar 

Download references

Authors

Additional information

Research Center of Cardiovascular Surgery, Russian Academy of Medical Sciences. Institute of Physics and Technology, Moscow. Translated from Meditsinskaya Tekhnika, No. 5, pp. 18–24, September–October, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeva, L.A., Meshkov, M.A. & Chubarova, E.Y. Comparative hydrodynamic evaluation of variants of cavapulmonary anastomosis. Biomed Eng 30, 260–267 (1996). https://doi.org/10.1007/BF02369077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02369077

Keywords

Navigation