Biomedical Engineering

, Volume 30, Issue 5, pp 260–267 | Cite as

Comparative hydrodynamic evaluation of variants of cavapulmonary anastomosis

  • L. A. Roeva
  • M. A. Meshkov
  • E. Ya. Chubarova
Research, Design, and Technology


  1. 1.

    Coaxial and angular shift of anastomosis have significant effects on the flow rate distribution, size and location of recirculation zones, and zones of vortex formation or congestion.

  2. 2.

    To reduce the hemodynamic complications caused by blood flow distortion, the CCPA anastomosis is recommended to be made at an angle of 60±5° to the RPA axis and with a 0.5d±0.1d axial shift.

  3. 3.

    If the anastomosis is shifted by more than 0.5d, a steady state macrovortex is formed at the central area of the CCPA. The vortex is a closed recirculation zone (three-dimensional coil) capable of complete obstruction of the blood vessel lumen.

  4. 4.

    Inadequately applied anastomosis may cause blood flow destructurization, increase the probability of hemolysis, ischemia, and thrombogenesis, and provoke postoperative arrhythmia caused by flow rate pulsations.



Vortex Ischemia Rate Pulsation Recirculation Zone Rate Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. V. Len'ko, E. E. Litasova, V. V. Pai, et al., Proc. 2nd All-Russian Congr. of Cardiovascular Surgeons, St. Petersburg (1993), pp. 12–13.Google Scholar
  2. 2.
    V. P. Podzolkov, M. R. Chiaureli, S. B. Zaets, et al., Grudnaya Serd.-Sosud. Khir., No. 6, 11–16 (1990).Google Scholar
  3. 3.
    H. S. Bossiouny, S. White, S. Glagov, et al., J. Vasc. Surg.,15, 708–716 (1992).Google Scholar
  4. 4.
    H. M. Crawshaw, W. C. Quist, E. Serralach, et al., Arch. Surg.,15, 1280–1284 (1980).Google Scholar
  5. 5.
    R. S. Keynton, S. E. Rittgers, and M. C. Shu, J. Biomech. Eng.,113, 458–463 (1991).Google Scholar
  6. 6.
    J. K. Kirklin, E. H. Blackstone, J. W. Kirklin, et al., J. Thorac. Cardiovasc. Surg.,92, 1049–1064 (1986).Google Scholar
  7. 7.
    M. R. de Leval, P. Kilner, M. Gewilling, and C. Bull, J. Thorac. Cardiovasc. Surg.,96, 682–692 (1988).Google Scholar
  8. 8.
    D. D. Mair, V. J. Rice, D. J. Hagler, et al., Circulation,72, No. 2, 88–92 (1985).Google Scholar
  9. 9.
    E. J. Puga, J. Thorac. Cardiovasc. Surg.,98, 150–154 (1989).Google Scholar
  10. 10.
    S. E. Rittgers and G. H. Bhambhani, Ultrasound Med. Biol.,19, 257–267 (1993).CrossRefGoogle Scholar
  11. 11.
    V. S. Sottiurai, J. S. T. Yao, W. R. Flinn, and R. C. Baston, Surgery,94, No. 6, 809–817 (1983).Google Scholar
  12. 12.
    V. S. Sottiurai, S. L. Sue, E. L. Feinberg, et al., Eur. J. Vasc. Surg.,2, 245–256 (1988).CrossRefGoogle Scholar
  13. 13.
    V. S. Sottiurai, J. S. T. Yao, R. C. Baston, et al., Ann. Vasc. Surg.,3, 26–33 (1989).Google Scholar
  14. 14.
    N. H. Staalsen, M. Ulrich, et al., J. Vasc. Surg.,21, 460–471 (1995).CrossRefGoogle Scholar
  15. 15.
    S. S. White, C. K. Zarins, D. P. Giddens, et al., J. Biomech. Eng.,115, 104–111 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • L. A. Roeva
  • M. A. Meshkov
  • E. Ya. Chubarova

There are no affiliations available

Personalised recommendations