Skip to main content
Log in

Reconstruction of atmospheric CO2 from ice-core data and the deep-sea record of ontong Java plateau: the Milankovitch chron

  • Original Paper
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

We provide a reconstruction of atmospheric CO2 from deep-sea sediments, for the past 625000 years (Milankovitch chron). Our database consists of a Milankovitch template of sea-level variation in combination with a unique data set for the deep-sea record for Ontong Java plateau in the western equatorial Pacific. We redate the Vostok ice-core data of Barnola et al. (1987). To make the reconstructions we employ multiple regression between deep-sea data, on one hand, and ice-core CO2 data in Antarctica, on the other. The patterns of correlation suggest that the main factors controlling atmospheric CO2 can be described as a combination of sea-level state and sea-level change. For best results squared values of state and change are used. The square-of-sea-level rule agrees with the concept that shelf processes are important modulators of atmospheric CO2 (e.g., budgets of shelf organic carbon and shelf carbonate, nitrate reduction). The square-of-change rule implies that, on short timescales, any major disturbance of the system results in a temporary rise in atmospheric CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews JT, Barry RG (1978) Glacial inception and disintegration during the last glaciation. Ann Rev Earth Planet Sci 6:205–228

    Google Scholar 

  • Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263

    Google Scholar 

  • Bacastow RA (1996) The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2 Biogeochem Cycles (in press)

  • Baksi AK (1994) Concordant sea-floor spreading rates obtained from geochronology, astrochronology, and space geodesy. Geophys Res Lett 21:133–136

    Article  Google Scholar 

  • Baksi AK, Hsu V, McWilliams MO, Farrar E (1992)40Ar/39Ar dating of the Brunhes-Matuyama geomagnetic field reversal. Science 256:356–357

    Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of the14C time-scale over the past 30 000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–410

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich Y, Lorius C (1987) Vostok ice core provides 160 000-year record of atmospheric CO2. Nature 329:408–414

    Article  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quaternary Sci Rev 10:297–317

    Article  Google Scholar 

  • Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) (1984) Milankovitch and climate (two volumes). Reidel, Dordrecht

    Google Scholar 

  • Berger A, Schneider S, Duplessy JC (eds) (1989) Climate and geo-sciences. Kluwer, Dordrecht

    Google Scholar 

  • Berger A, Tricot C, Galleé H, Fichefet T, Loutre MF (1994) The last two glacial-interglacial cycles simulated by the LLN Model. In: Duplessy J-C, Spyridakis M-T (eds) Long-term climatic variations. Springer, Berlin Heidelberg New York, pp 411–444

    Google Scholar 

  • Berger WH (1981) Paleoceanography: the deep-sea record. In: Emiliani C (ed) The sea, vol. 7. Wiley, New York, pp 1437–1519

    Google Scholar 

  • Berger WH (1982) Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69:87–88

    Article  Google Scholar 

  • Berger WH, Gardner JV (1975) On the determination of Pleistocene temperatures from planktonic foraminifera. J Foram Res 5 (2): 102–113

    Google Scholar 

  • Berger WH, Herguera, JC (1992) Reading the sedimentary record of the ocean’s productivity. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 455–486

    Google Scholar 

  • Berger WH, Jansen E (1994) Mid-Pleistocene climate shift: the Nansen connection. In: Johanessen OM, Muench RD, Overland JE (eds) The polar oceans and their role in shaping the global environment: The Nansen centennial volume. AGU Geophys Monogr 84:295–311

    Google Scholar 

  • Berger WH, Jansen E (1995) Younger Dryas episode: ice collapse and superfjord heat pump. In: Troelstra SR, Hinte JE van, Ganssen GM (eds) The Younger Dryas, North Holland, Amsterdam, pp 61–105

    Google Scholar 

  • Berger WH, Keir RS (1984) Glacial-Holocene changes in atmospheric CO2 and the deep-sea record. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. Geophys Monogr 29, Maurice Ewing Series, vol. 5, American Geophys Union, Washington, D.C., pp 337–351

    Google Scholar 

  • Berger WH, Spitzy A (1988) History of atmospheric CO2: constraints from the deep-sea record. Paleoceanography 3:401–411

    Google Scholar 

  • Berger WH, Wefer G (1992) Klimageschichte aus Tiefseesedimenten — Neues vom Ontong-Java-Plateau (Westpazifik). Naturwissenschaften 79:541–550

    Article  Google Scholar 

  • Berger WH, Burke S, Vincent E (1987) Glacial-Holocene transition: climate pulsations and sporadic shutdown of NADW production. In: Berger WH, Labeyrie LD (eds) Abrupt climatic changes: evidence and implications. Reidel, Dordrecht, pp 279–297

    Google Scholar 

  • Berger WH, Smetacek VS, Wefer G (eds) (1989) Productivity of the ocean: present and past. Dahlem Konferenzen. Wiley, Chichester, 470 pp

    Google Scholar 

  • Berger WH, Bickert T, Schmidt H, Wefer G (1993a) Quaternary oxygen isotope record of pelagic foraminifers: site 806, Ontong Java plateau. Proc Ocean Drilling Program Sci Results 130:381–395

    Google Scholar 

  • Berger WH, Bickert T, Schmidt H, Wefer G, Yasuda M (1993b) Quaternary oxygen isotope record of pelagic foraminifers: site 805, Ontong Java plateau. Proc Ocean Drilling Program Sci Results 130:363–379

    Google Scholar 

  • Berger WH, Yasuda M, Bickert T, Wefer G, Takayama T (1994) Quaternary time scale for the Ontong Java plateau: Milankovitch template for Ocean Drilling Program site 806. Geology 22:463–467

    Google Scholar 

  • Berger WH, Yasuda M, Bickert T, Wefer G (1995) Brunhes-Matuyama boundary: 790 k.y. date consistent with ODP Leg 130 oxygen isotope records based on fit to Milankovitch template. Geophys Res Lett 22:1525–1528

    Article  Google Scholar 

  • Bickert T, Berger WH, Burke S, Schmidt H, Wefer G (1993) Late Quaternary stable isotope record of benthic foraminifers: sites 805 and 806, Ontong Java plateau. Proc Ocean Drilling Program Sci Results 130:411–420

    Google Scholar 

  • Birchfield GE (1977) A study of the stability of a model continental ice sheet subject to periodic variations in heat input. J Geophys Res 82:4909–4913

    Google Scholar 

  • Birchfield GE, Ghil M (1993) Climate evolution in the Pliocene and Pleistocene from marine-sediment records and simulations: internal variability versus orbital forcing. J Geophys Res 98 (10): 385–399

    Google Scholar 

  • Birchfield GE, Grumbine RW (1985) “Slow” physics of large continental ice sheets and underlying bedrock and its relation to the Pleistocene ice ages. J Geophys Res 90 (11): 294–302

    Google Scholar 

  • Boyle EA (1988a) The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. J Geophys Res 93 (15): 701–714

    Google Scholar 

  • Boyle EA (1988b) Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycle. Nature 331:55–56

    Article  Google Scholar 

  • Broecker WS (1982) Ocean chemistry during glacial time. Geochim Cosmochim Acta 46:1689–1705

    Article  Google Scholar 

  • Broecker WS, Denton GH (1989) The role of ocean-atmosphere reorganizations in glacial cycles. Geochim Cosmochim Acta 53:2465–2501

    Google Scholar 

  • Broecker WS, Peng TH (1986) Carbon cycle: 1985, glacial to interglacial changes in the operation of the global carbon cycle. Radiocarbon 28 (2A): 309–327

    Google Scholar 

  • Broecker WS, Peng TH (1987) The role of CaCO3 compensation in the glacial to interglacial CO2 change. Global Biogeochem Cycles 1:15–30

    Google Scholar 

  • Broecker WS, Peng TH (1989) The cause of the glacial to interglacial atmospheric CO2 change: a polar alkalinity hypothesis. Global Biogeochem Cycles 3:215–239

    Google Scholar 

  • Broecker WS, Van Donk J (1970) Insolation changes, ice volumes, and the O-18 record in deep-sea cores. Rev Geophys Space Phys 8:169–197

    Google Scholar 

  • Calder N (1974) Arithmetic of ice ages. Nature 252:216–218

    Article  Google Scholar 

  • Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095

    Article  Google Scholar 

  • Crowley T (1991) Past CO2 changes and tropical sea surface temperatures. Paleoceanography 6:387–395

    Google Scholar 

  • Curry WB, Crowley TJ (1987) The δ13C of equatorial Atlantic surface waters: implications for ice age pCO2 levels. Paleoceanography 2:485–517

    Google Scholar 

  • DeBlonde G, Peltier WR (1991) A one-dimensional model of continental ice volume fluctuations through the Pleistocene: implications for the origin of the mid-Pleistocene climate transition. J Clim 4:318–344

    Article  Google Scholar 

  • Denton GH, Hughes TJ (eds) (1981) The last great ice sheets. Wiley, New York

    Google Scholar 

  • Denton GH, Hughes TJ (1983) Milankovitch theory of ice ages: hypothesis of ice-sheet linkage between regional insolation and global climate. Quaternary Res 20:125–144

    Article  Google Scholar 

  • Duplessy JC, Labeyrie LD (1994) Surface and deep water circulation changes during the last climatic cycle. In: Duplessy J-C, Spyridakis M-T (eds) Long-term climatic variations. Springer, Berlin Heidelberg New York, pp 277–298

    Google Scholar 

  • Emerson S, Archer D (1992) Glacial carbonate dissolution and atmospheric pCO2; a view from the ocean bottom. Paleoceanography 7:319–331

    Google Scholar 

  • Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578

    Google Scholar 

  • Emiliani C, Geiss J (1958) On glaciations and their causes. Geol Rundsch 46:576–601

    Google Scholar 

  • Fairbanks RG (1989) A 17 000-year long glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–643

    Article  Google Scholar 

  • Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem Cycles 6:185–198

    Google Scholar 

  • Gallée H, Van Ypersele JP, Fichefet TH, Marsiat I, Tricot C, Berger A (1992) Simulation of the last glacial cycle by a coupled, sectorially averaged climate-icesheet model. II. Response to insolation and CO2 variation. J Geophys Res 97:15713–15740

    Google Scholar 

  • Genthon C, Barnola JM, Raynaud D, Lorius C, Louzel J, Barkov NI, Korotkevich YS, Kotlyakov VM (1987) Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature 329:414–418

    Article  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Google Scholar 

  • Heinze C, Maier-Reimer E, Winn K (1991) Glacial pCO2 reduction by the world ocean: experiments with the Hamburg Carbon Cycle Model. Paleoceanography 6:395–430

    Google Scholar 

  • Hilgen FJ (1991) Extension of the astronomically calibrated (polarity) timescale to the Miocene/Pliocene boundary. Earth Planet Sci Lett 107:349–368

    Article  Google Scholar 

  • Hollander DJ, McKenzie JA (1991) CO2 control on carbon isotopic fractionation during aqueous photosynthesis: a paleo-pCO2 barometer. Geology 19:929–932

    Article  Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (eds) (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes TJ (1977) West Antarctic ice streams. Rev Geophys Space Phys 15:1–46

    Google Scholar 

  • Hyde WT, Peltier WR (1985) Sensitivity experiments with a model of the Ice Age: The response to harmonic forcing. J Atmos Sci 42 (20): 2170–2188

    Article  Google Scholar 

  • Imbrie J, Imbrie JZ (1980) Modeling the climatic response to orbital variations. Science 202:943–953

    Google Scholar 

  • Imbrie J, Van Donk J, Kipp NG (1973) Paleoclimatic investigation of a late Pleistocene Caribbean deep-sea core: comparison of isotopic and faunal methods. Quaternary Res 3:10–38

    Article  Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and climate: understanding the response to astronomical forcing, part I. Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Imbrie J, Berger A, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles 2:the 100 000-year cycle. Paleoceanography 8:699–735

    Google Scholar 

  • Jasper JP, Hayes JM (1990) A carbon isotope record of CO2 levels during the late Quaternary. Nature 347:462–464

    Article  Google Scholar 

  • Jasper JP, Hayes JM (1994) Reconstruction of paleoceanic PCO2 levels from carbon isotopic composition of sedimentary biogenic components. In: Zahn R et al. (eds) Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. Springer, Berlin Heidelberg New York, pp 323–341

    Google Scholar 

  • Jasper JP, Hayes JM, Mix AC, Prahl FG (1994) Photosynthetic fractionation of13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255 000 years. Paleoceanography 9:781–798

    Article  Google Scholar 

  • Johnson RG (1982) Brunhes-Matuyama magnetic reversal dated at 790 000 yr B.P. by marine-astronomical correlations. Quaternary Res 17:135–147

    Google Scholar 

  • Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VN (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160 000 years). Nature 329:403–408

    Article  Google Scholar 

  • Jouzel J, Barkov NI, Barnola JM, Genthon C, Korotkevich YS, Kotlyakov VM, Legrand M, Lorius C, Petit JP, Petrov VN, Raisbeck G, Raynaud D, Ritz C, Yiou F (1989) Global change over the last climatic cycle from the Vostok ice core record (Antarctica). Quaternary Int 2:15–24

    Article  Google Scholar 

  • Jouzel J, Barkov NI, Barnola JM, Bender M, Chappellaz J, Genthon C, Kotlyakov VM, Lipenkov V, Lorius C, Petit JR, Raynaud D, Raisbeck G, Ritz C, Sowers T, Stievenard M, Yiou F, Yiou P (1993) Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364:407–412

    Article  Google Scholar 

  • Jouzel J, Lorius C, Petit JR, Ritz C, Stievenard M, Yiou P, Barkov NI, Kotlyakov VM, Lipenkov V (1994) The climatic record from Antarctic ice now extends back to 220 kyr BP. In: Duplessy J-C, Spyridakis M-T (eds) Long-term climatic variations. Springer, Berlin Heidelberg New York, pp 213–237

    Google Scholar 

  • Keir RS (1988) On the late Pleistocene ocean geochemistry and circulation. Paleoceanography 3:413–445

    Google Scholar 

  • Keir RS (1990) Reconstructing the ocean carbon system variation during the last 150 000 years according to the Antarctic nutrient hypothesis. Paleoceanography 5:253–276

    Google Scholar 

  • Keir RS (1993) Cold surface ocean ventilation and its effect on atmospheric CO2. J Geophys Res 98:849–856

    Google Scholar 

  • Keir RS, Berger WH (1983) Atmospheric CO2 content in the last 120 000 years: the phosphate-extraction model. J Geophys Res 88 (C10): 6027–6038

    Google Scholar 

  • Köppen W, Wegener A (1924) Die Klimate der geologischen Vorzeit. Bornträger, Berlin

    Google Scholar 

  • Maier-Reimer E, Bacastow R (1990) Modelling of geochemical tracers in the ocean. In: Schlesinger M (ed) Climate-ocean interaction. Kluwer, Boston, pp 233–267

    Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13

    Google Scholar 

  • McCorkle DC, Keigwin LD, Corliss BH, Emerson SR (1990) The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography 5:161–185

    Google Scholar 

  • McIntyre A, Kipp NG, Bé AWH, Crowley T, Kellog T, Gardner JV, Prell W, Ruddimann WF (1976) Glacial North Atlantic 18 000 years ago: A CLIMAP reconstruction. Geol Soc Am Mem 145:43–76

    Google Scholar 

  • Milankovitch M (1920) Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Gauthier Villars, Paris

    Google Scholar 

  • Milankovitch M (1930) Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. Handbuch der Klimatologie, Bd 1, Teil A. Bornträger, Berlin

    Google Scholar 

  • Milliman J (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cycles 7:927–957

    Google Scholar 

  • Mix AC (1989) Influence of productivity variations on long-term atmospheric CO2. Nature 337:541–544

    Article  Google Scholar 

  • Mix AC, Pisias NG, Zahn R, Rugh W, Lopez C, Nelson K (1991) Carbon-13 in Pacific deep and intermediate waters, 0–370 ka: implications for ocean circulation and Pleistocene CO2. Paleoceanography 6:205–226

    Google Scholar 

  • Muller RA, MacDonald GJ (1995) Glacial cycles and orbital inclination. Nature 377:108

    Article  Google Scholar 

  • Müller PJ, Schneider R, Ruhland G (1994) Late Quaternary pCO2 variations in the Angola current: evidence from organic carbon δ13C and alkenone temperatures. In: Zahn R et al. (eds) Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. Springer, Berlin Heidelberg New York, pp 343–366

    Google Scholar 

  • Neftel A, Oeschger H, Staffelbach T, Stauffer B (1988) CO2 record in the Byrd ice core 50 000–5000 years BP. Nature 331:609–611

    Article  Google Scholar 

  • Oerlemans J (1980) Model experiments on the 100 000 year glacial cycle. Nature 287:430–432

    Article  Google Scholar 

  • Oerlemans J (1982) Glacial cycles and ice-sheet modelling. Clim Change 4:353–374

    Article  Google Scholar 

  • Opdyke BN, Walker JCG (1992) Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology 20:733–736

    Article  Google Scholar 

  • Oppo DW, Fairbanks RG, Gordon AL, Shackleton NJ (1990) Late Pleistocene southern ocean δ13C variability. Paleoceanography 5:43–54

    Google Scholar 

  • Pedersen TF, Nielsen B, Pickering M (1991) Timing of late Quaternary productivity pulses in the Panama basin and implications for atmospheric CO2. Paleoceanography 6:657–677

    Google Scholar 

  • Peltier WR (1994) Physics of the ice age cycle. In: Duplessy J-C, Spyridakis M-T (eds) Long-term climatic variations. Springer, Berlin Heidelberg New York, pp 453–479

    Google Scholar 

  • Pisias NG, Moore TC (1981) The evolution of Pleistocene climate: a time series approach. Earth Planet Sci Lett 52:450–456

    Article  Google Scholar 

  • Pisias NG, Shackleton NJ (1984) Modeling the global climate response to orbital forcing and atmospheric carbon dioxide changes. Nature 310:757–759

    Article  Google Scholar 

  • Pollard D (1982) A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature 296:334–338

    Article  Google Scholar 

  • Popp BN, Takigiku R, Hayes JM, Louda JW, Baker EW (1989) The post-Paleozoic chronology and mechanism of13C depletion in primary marine organic matter. Am J Sci 289:436–454

    Google Scholar 

  • Prentice ML, Friez JK, Simonds GG, Matthews RK (1993) Neogene trends in planktonic foraminifer δ18O from site 807:implications for global ice volume and western equatorial Pacific sea-surface temperatures. In: Berger WH, Kroenke LW, Mayer LA et al. (eds) Proc Ocean Drilling Program Sci Results 130:281–305

    Google Scholar 

  • Rau GH (1994) Variations in sedimentary organic δ13C as a proxy for past changes in ocean and atmospheric CO2 concentrations. In: Zahn R et al. (eds) Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. Springer, Berlin Heidelberg New York, pp 307–321

    Google Scholar 

  • Rau GH, Takahashi T, DesMarais DJ (1989) Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341:516–518

    Article  Google Scholar 

  • Rau GH, Froelich PN, Takahashi T, Des Marais DJ (1991) Does sedimentary organic δ13C record variations in Quaternary ocean [CO2(aq)]? Paleoceanography 6:335–347

    Google Scholar 

  • Raynaud D, Barnola JM, Chappellaz J, Zardini D, Jouzel J, Lorius C (1992) Glacial-interglacial evolution of greenhouse gases as inferred from ice core analysis: a review of recent results. Quaternary Sci Rev 11:381–386

    Article  Google Scholar 

  • Ruddiman WF, McIntyre A (1981) The mode and mechanism of the last deglaciation: oceanic evidence. Quaternary Res 16:125–134

    Google Scholar 

  • Ruddiman WF, McIntyre A (1984) An evaluation of ocean-climate theories on the North Atlantic. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and climate, part 2. Reidel, Dordrecht, pp 671–686

    Google Scholar 

  • Ruddiman WF, Wright HE (1987) North America and adjacent oceans during the last deglaciation. The Geological Society of America, Boulder, Colorado

    Google Scholar 

  • Ruddiman WF, McIntyre A, Raymo ME (1986) Matuyama 41 000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth Planet Sci Lett 80:117–129

    Article  Google Scholar 

  • Ruddiman WF, Raymo ME, Martinson DG, Clement BM, Backman J (1989) Pleistocene evolution: northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4 (4):353–412

    Google Scholar 

  • Saltzman B (1987) Carbon dioxide and the δ18O record of late-Quaternary climatic change: a global model. Clim Dyn 1:77–85

    Article  Google Scholar 

  • Saltzman B, Verbitsky M (1994) Late Pleistocene climatic trajectory in the phase space of global ice, ocean state, and CO2: observations and theory. Paleoceanography 9:767–779

    Article  Google Scholar 

  • Sarnthein M, Winn K, Zahn R (1987) Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climate change during deglaciation times. In: Berger WH, Labeyrie LD (eds) Abrupt climatic change: evidence and implications. Reidel, Dordrecht, pp 311–337

    Google Scholar 

  • Schiffelbein P (1984) Stable isotope systematics in Pleistocene deep-sea sediment records. Ph.D. dissertation, University of California, San Diego, California, 228 pp

    Google Scholar 

  • Schmidt H, Berger WH, Bickert T, Wefer G (1993) Quaternary carbon isotope record of pelagic foraminifera: site 806, Ontong Java plateau. Proc Ocean Drilling Program Sci Results 130:397–409

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1973) Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific Core V28–238: oxygen isotope temperatures and ice volumes on a 105-year and 106-year scale. Quaternary Res 3:39–55

    Article  Google Scholar 

  • Shackleton NJ, Pisias NG (1985) Atmospheric carbon dioxide, orbital forcing, and climate. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to Present. Am Geophys Union Geophys Monogr 32:303–317

    Google Scholar 

  • Shackleton NJ, Hall MA, Shuxi C (1983) Carbon isotope data in core V19–30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306:319–322

    Article  Google Scholar 

  • Shackleton NJ, Berger A, Peltier WR (1990) An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Trans R Soc Edinburgh Earth Sci 81:251–261

    Google Scholar 

  • Shackleton NJ, Le J, Mix A, Hall MA (1992) Carbon isotope records from Pacific surface waters and atmospheric carbon dioxide. Quaternary Sci Rev 11:387–400

    Article  Google Scholar 

  • Shaffer G (1989) A model of biogeochemical cycling of phosphorus, nitrogen, oxygen, and sulphur in the ocean: one step toward a global climate model. J Geophys Res 94:1979–2004

    Google Scholar 

  • Shaffer G (1990) A non-linear climate oscillator controlled by biogeochemical cycling in the ocean: an alternative model of Quaternary ice age cycles. Clim Dyn 4:127–143

    Article  Google Scholar 

  • Sowers T, Bender M (1995) Climate records covering the last deglaciation. Science 269:210–214

    Google Scholar 

  • Sowers T, Bender M, Raynaud D, Korotkevich YS, Orchado J (1991) The δ18O of atmospheric O2 from air inclusions in the Vostok ice core: timing of CO2 and ice volume changes during the penultimate deglaciation. Paleoceanography 6:679–696

    Google Scholar 

  • Sowers T, Bender M, Labeyrie L, Martinson D, Jouzel J, Raynaud D, Pichon JJ, Korotkevich YS (1993) A 135 000-year Vostok-SPECMAP common temporal framework. Paleoceanography 8:737–766

    Google Scholar 

  • Struck U, Sarnthein M, Westerhausen L, Barnola JM, Raynaud D (1993) Ocean-atmosphere carbon exchange: impact of the “biological pump” in the Atlantic equatorial upwelling belt over the last 330 000 years. Palaeogeogr Palaeoclimatol Palaeoecol 103:41–56

    Article  Google Scholar 

  • Sundquist ET, Broecker WS (eds) (1985) The carbon cycle and atmospheric CO2: natural variations Archean to Present. Am Geophys Union Geophys Monogr 32:1–627

  • Szabo BJ, Ludwig KR, Muhs DR, Simmons KR (1994) Thorium-230 ages of corals and duration of the last interglacial sea-level high stand on Oahu, Hawaii. Science 266:93–96

    Google Scholar 

  • Thunell RC, Quingmin M, Calvert SE, Pedersen TF (1992) Glacial-Holocene biogenic sedimentation patterns in the South China Sea: productivity variations and surface water pCO2. Paleoceanography 7:143–162

    Google Scholar 

  • Vincent E, Berger WH (1981) Planktonic foraminifera and their use in paleoceanography. In: Emiliani C (ed) The sea, vol. 7. Wiley, New York, pp 1025–1119

    Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to Present. Am Geophys Union Geophys Monogr 32:99–110

    Google Scholar 

  • Waelbroeck C, Jouzel J, Labeyrie L, Lorius C, Labracherie M, Stiévenard M, Barkov NI (1995) A comparison of the Vostok ice deuterium record and series from Southern Ocean core MD 88–770 over the last two glacial-interglacial cycles. Clim Dyn 12:113–123

    Google Scholar 

  • Walker JCG, Opdyke BC (1995) Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments. Paleoceanography 10:415–427

    Article  Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Article  Google Scholar 

  • Westerhausen L, Sarnthein M, Struck U, Erlenkeuser H, Poynter J (1994) PCO2 variations of equatorial surface water over the last 330 000 years: the δ13C record of organic carbon. In: Zahn R et al. (eds) Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. Springer, Berlin Heidelberg New York, pp 367–382

    Google Scholar 

  • Wigley TML (1976) Spectral analyses and the astronomical theory of climate change. Nature 264:629–631

    Article  Google Scholar 

  • Winograd IJ, Coplen TB, Landwehr JM, Riggs AC, Ludwig KR, Szabo BJ, Kolesar PT, Revesz KM (1992) Continuous 500 000-year climate record from vein calcite in Devils Hole Nevada. Science 258:255–260

    Google Scholar 

  • Wu G, Berger WH (1991) Pleistocene δ18O records from Ontong-Java plateau: effects of winnowing and dissolution. Mar Geol 96:193–209

    Article  Google Scholar 

  • Zahn R, Winn K, Sarnthein M (1986) Benthic foraminiferal δ13C and accumulation rates of organic carbon:Uvigerina peregrina group andCibicides wuellerstorfi. Paleoceanography 1:27–42

    Google Scholar 

  • Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (1994) Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, W.H., Yasuda, M.K., Bickert, T. et al. Reconstruction of atmospheric CO2 from ice-core data and the deep-sea record of ontong Java plateau: the Milankovitch chron. Geol Rundsch 85, 466–495 (1996). https://doi.org/10.1007/BF02369003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02369003

Key words

Navigation