Advertisement

Annals of Biomedical Engineering

, Volume 20, Issue 6, pp 583–594 | Cite as

Orthopedic prosthesis fixation

  • Joon B. Park
Article

Abstract

The fixation of orthopedic implants has been one of the most difficult and challenging problems. The fixation can be achieved via: (a) direct mechanical fixation using screws, pins, wires, etc.; (b) passive or interference mechanical fixation where the implants are allowed to move or merely positioned onto the tissue surfaces; (c) bone cement fixation which is actually a grouting material; (d) biological fixation by allowing tissues to grow into the interstices of pores or textured surfaces of implants; (e) direct chemical bonding between implant and tissues; or (f) any combination of the above techniques. This article is concerned with various fixation techniques including the potential use of electrical, pulsed electromagnetic field chemical stimulation using calcium phosphates for the enhancement of tissue ingrowth, direct bonding with bone by glass-ceramics and resorbable particle impregnated bone cement to take advantages of both the immediate fixation offered by the bone cement and long term fixation due to tissue ingrowth.

Keywords

orthopedic prosthesis Fixation Bone cement Biological fixation Tissue ingrowth Stimulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amstutz, H.; Markolf, K.L.; McNeice, G.M.; Gruen, T.A. Loosening of total hip components; cause and prevention. In: The hip, St. Louis: C. V. Mosby Co.; 1976: pp. 102–116.Google Scholar
  2. 2.
    Barb, W.; Park, J.B.; Von Recum, A.F.; Kenner, G.H.: Intramedullary fixation of artificial hip joints with bone cement precoated implants: I. Interfacial strengths. J. Biomed. Mater. Res. 16:447–458; 1982.CrossRefPubMedGoogle Scholar
  3. 3.
    Blencke, B.A.; Bromer, H.; Deutscher, K.K. Compatibility and long-term stability of glass ceramic implants. J. Biomed. Mater. Res. 12:307–316; 1978.PubMedGoogle Scholar
  4. 4.
    Brand, R.A., ed. The hip: Non-cemented hip implants. St. Louis: C. V. Mosby Co.; 1987: pp. 213–358.Google Scholar
  5. 5.
    Charnley, J.: Acrylic cement in orthopedic surgery. Baltimore: Williams and Wilkins; 1970.Google Scholar
  6. 6.
    Charnley, J. The long-term results of low-friction arthroplasty of the hip, performed as a primary intervention. J. Bone Joint Surg. 54B:61–76; 1972.Google Scholar
  7. 7.
    Charnley, J.; Cupic, Z. The nine and ten year results of the low-friction arthroplasty of the hip. Clin. Orthop. Rel. Res. 95:9–25; 1973.Google Scholar
  8. 8.
    Cranin, A.N.; Schnitman, P.A.; Rabkin, M.; Dennison, T.; Onesto, E.J. Alumina and zirconia coated vitallium oral endosteal implants. J. Biomed. Mater. Res. symposium 6:257–262; 1972.Google Scholar
  9. 9.
    Dai, K.R.; Liu, Y.K.; Park, J.B.; Zhang, Z.K. Bone particle impregnated bone cement: Anin vivo weight-bearing study. J. Biomed. Mater. Res. 25:141–156; 1991.CrossRefPubMedGoogle Scholar
  10. 10.
    Dai, K.R. Personnal communications; 1990, 1991.Google Scholar
  11. 11.
    Eftekhar, N.S.: Principles of total hip arthroplasty. St. Louis: C. V. Mosby Co.; 1978: pp. 125–148.Google Scholar
  12. 12.
    Eftekhar, N.S. Long-term results of cemented total hip arthroplasty. Clin. Orthop. Relat. Res. 225:207–217, 1987.PubMedGoogle Scholar
  13. 13.
    Gessink, R.G.; De Groot, K.; Klein, C. Chemical implant fixation using hydroxyapatite coatings. Clinic. Orthop. Relat. Res. 226:147–170; 1987.Google Scholar
  14. 14.
    Gruen, T.S.; McNeice, G.M.; Amstutz, H.A. Modes of failure of cemented stem-type femoral components. Clin. Orthop. Relat. Res. 141:17–27; 1979.PubMedGoogle Scholar
  15. 15.
    Harris, W.H.; McGann, W.A. Loosening of the femoral component after use of the medullary-plug cementing technique. J. Bone Joint Surg. 67B:222; 1984.Google Scholar
  16. 16.
    Heimke, G., ed. Osseo-integrated implants. Vol. I & II. Boca Raton, FL: CRC Press; 1990.Google Scholar
  17. 17.
    Hench, L.L.; Paschall, H.A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. Symposium 4:25–43; 1973.Google Scholar
  18. 18.
    Hirshhorn, J.S.; McBeath, A.A.; Dustoor, M.R. Porous titanium surgical implant materials. J. Biomed. Mater. Res. Symposium 2:49–69; 1972.Google Scholar
  19. 19.
    Homsy, C.A.; Cain, T.E.; Kessler, F.B.; Anderson, M.S.; King, J.W. Porous implant systems for prosthetic stabilization. Clin. Orthop. Relat. Res. 89:220–231; 1972.PubMedGoogle Scholar
  20. 20.
    Johnston, R.C. The case for cemented hips. In: Brand, R.A., ed. The hip. St. Louis: C. V. Mosby Co.; 1987: pp. 351–358.Google Scholar
  21. 21.
    Kay, J.F. Bioactive surface coatings: Cause for encouragement and caution. J. Oral Implant 16:43–54; 1988.Google Scholar
  22. 22.
    Keet, G.G.M.; Runne, W.C. The anaform endoprosthesis: A proplast-coated femoral endoprosthesis. Orthop. 12:1185–1190; 1989.Google Scholar
  23. 23.
    Kim, K.J.; Greis, P.; Wilson, S.C.; D'Antonio, J.A.; McClain, E.J.; Rubash, H.E. Histological and biological comparison of membranes from titanium, cobalt-chromium, and polyethylene hip prosthesis. 37th Annual Meeting Trans. Orthopedic Research Soc. 16:191; 1991.Google Scholar
  24. 24.
    Klawitter, J.J.; Hulbert, S.F. Application of porous ceramics for the attachment of load bearing internal orthopaedic applications. J. Biomed. Mater. Res. Symposium 2 (Part 1):161–229; 1972.Google Scholar
  25. 25.
    Liu, Y.K.; Park, J.B.; Njus, G.O.; Stienstra, D. Bone particle impregnated bone cement I.In vitro study. J. Biomed. Mater. Res. 21:247–261; 1987.CrossRefPubMedGoogle Scholar
  26. 26.
    Mears, D.C. Materials and orthopedic surgery. Baltimore: Williams and Wilkins; 1979: pp. 602–603.Google Scholar
  27. 27.
    Mittlemeier, H. New development of wear-resistant ceramic and metal composite prostheses with ribbed support shafts for cement-free implantation. Hefte zur Unfallheikunde: Beihefe zue Monatsschrift fur Unfallheikunde, Verischerings, Versorgungs und verkehrsmedizin 126:333–336; 1975.Google Scholar
  28. 28.
    Moore, A.T. Metal hip joint: A new self-locking vitallium prosthesis. South Med. J. 45:1015; 1952.PubMedGoogle Scholar
  29. 29.
    Morscher, E., ed. The cementless fixation of hip endoprosthesis. Heidelberg: Springer-Verlag; 1984.Google Scholar
  30. 30.
    Niles, J.L.; Lapitsky, M. Biomechanical investigations of bone-porous carbon and metal interfaces. J. Biomed. Mater. Res. Symposium 4:63–84; 1975.Google Scholar
  31. 31.
    Oonishi, H.; Yamamoto, M.; Ishimaru, H.; Tsuji, E.; Kushitani, S.; Aono, M.; Ukon, Y. Comparisons of bone ingrowth into porous Ti-6Al-4V beads uncoated and coated with hydroxyapatite. In: Bioceramics. Oonishi, H.; Aoki, H.; Sawai, K., eds. Tokyo and St. Louis: Ishiyaku EuroAmerica, Inc., 1989: pp. 400–405.Google Scholar
  32. 32.
    Park, J.B. Acrylic bone cement:In vitro andin vivo property-structure relationship-A selective review, Annals Biomed. Eng. 11:297–312; 1983.Google Scholar
  33. 33.
    Park, J.B. Implant fixation by pulsed electromagnetic field stimulation. Unpublished study; 1983.Google Scholar
  34. 34.
    Park, J.B. Biomaterials science and engineering. New York: Plenum Pub.; 1984: pp. 282–288.Google Scholar
  35. 35.
    Park, J.B.In vivo evaluation of resorbable surface bone implant. Unpublished study; 1988.Google Scholar
  36. 36.
    Park, J.B.; Barb, W.; Kenner G.H.; von Recum, A.F. Intramedullary fixation of artificial hip joints with bone cement precoated implants. II. Density and histological study. J. Biomed. Mater. Res. 16:459–469; 1982.CrossRefPubMedGoogle Scholar
  37. 37.
    Park, J.B.; Barb, W.; Davies, J.P. Long-term evaluation of precoated canine femoral prosthesis. In: Saha, S., ed. Biomedical Engineering I: Recent developments. New York: Pergamon Press; 1982: pp. 295–298.Google Scholar
  38. 38.
    Park, J.B.; Choi, W.W.; Liu, Y.K.; Haugen, T.W. Bone particle impregnated polymethylmethacrylate:In vitro andin vivo study. In: Van Steenberghe, D., ed. Tissue integration in oral and facial reconstruction. Amsterdam: Excerptu Medica; 1986: pp.118–124.Google Scholar
  39. 39.
    Park, J.B.; Kenner, G.H. Effect of electrical stimulation on the tensile strength of the porous implant and bone interface. Biomater. Med. Dev. Artif. Org. 3:233–243; 1975.Google Scholar
  40. 40.
    Park, J.B.; Malstrom, C.S.; von Recum, A.F. Intramedullary fixation of implants pre-coated with bone cement: A preliminary study. Biomater. Med. Dev. Artif. Org. 6:361–373; 1978.Google Scholar
  41. 41.
    Park, J.B.; von Recum, A.F.; Gratzick, G.E. Pre-coated orthopedic implants with bone cement. Biomater. Med. Dev. Artif. Org. 7:41–53; 1979.Google Scholar
  42. 42.
    Parsons, J.R.; Ricci, J.L.; Liebrecht, P.; Salsbury, R.L.; Patras, A.S.; Alexander, H. Enhanced stabilization of orthopaedic implants with spherical hydroxylapatite particulate. Dublin, CD: OrthoMatrix, Inc.; 1987.Google Scholar
  43. 43.
    Predecki, P.; Stephan, J.E.; Auslander, B.E.; Mooney, V.L.; Kirkland, K. Kinetics of bone growth into cylindrical channels in aluminum oxide and titanium. J. Biomed. Mater. Res. 6:375–400; 1972.CrossRefPubMedGoogle Scholar
  44. 44.
    Raab, S.; Ahmed, A.M.; Provan, J.W. Thin film PMMA precoating for improved implant bone-cement fixation. J. Biomed. Mater. Res. 16:679–704; 1982.CrossRefPubMedGoogle Scholar
  45. 45.
    Sadr, B.; Arden, G.P. A comparison of the stability of proplast-coated and cemented Thompson prosthesis in the treatment of subcapital femoral fractures. Injury 8:234–237; 1987.Google Scholar
  46. 46.
    Sauer, B.W.; Weinstein, A.M.; Klawitter, J.J.; Hulbert, S.F.; Leonard, R.B.; Bagwell, J.G. The role of porous polymeric materials in prosthesis attachment. J. Biomed. Mater. Res. Symposium 5:145–156; 1974.Google Scholar
  47. 47.
    Smith, L. Ceramic-plastic materials as a bone substitute. Arch. Surg. 87:653–661; 1963.PubMedGoogle Scholar
  48. 48.
    Spector, M. Bone ingrowth into porous polymers. In: Williams D.F., ed. Biocompatibility of orthopedic implants, Vol II. Boca Raton, FL: CRC Press; 1982; pp. 89–128.Google Scholar
  49. 49.
    Spector, M. Bone ingrowth into porous metals. In: Williams D.F., ed. Biocompatibility of orthopedic implants, Vol II. Boca Raton, FL: CRC Press; 1982: pp. 55–88.Google Scholar
  50. 50.
    Swanson, A.B. Flexible implant resection arthroplasty in the hand and extremities. St. Louis: C. V. Mosby Co.; 1973.Google Scholar
  51. 51.
    Thomas, K.A.; Cook, S.D.; Renz, E.A.; Anderson, R.C.; Haddad, Jr., R.J.; Haubold, A.D.; Yapp R. The effect of surface treatments on the interface mechanics of LTI pyrolytic carbon implants. J. Biomed. Mater. Res. 19:145–160; 1985.PubMedGoogle Scholar
  52. 52.
    Tullos, H.S.; McCaskill, B.L.; Dickey, R.; Davidson, J. Total hip arthroplasty with a low-modulus porous-coated femoral component. J Bone Joint Surg. 66A:888–898; 1984.Google Scholar
  53. 53.
    Weinstein, A.M.; Klawitter, J.J.; Cleveland, T.W.; Amoss, D.C. Electrical stimulation of bone growth into porous Al2O3. J. Biomed. Mater. Res. 10:231–247; 1976.CrossRefPubMedGoogle Scholar
  54. 54.
    Williams, D.F.; Roaf, R.: Implants in surgery. London: W.B. Saunders; 1973.Google Scholar
  55. 55.
    Wroblewski B.M. 15–21 year results of the Charnley low-friction arthroplasty. Clin. Orthop. Rel. Res. 221:30–35; 1986.Google Scholar

Copyright information

© Pergamon Press Ltd. 1992

Authors and Affiliations

  • Joon B. Park
    • 1
  1. 1.Department of Biomedical EngineeringThe University of IowaIowa City

Personalised recommendations