Skip to main content
Log in

A relation between the Akaike criterion and reliability of parameter estimates, with application to nonlinear autoregressive modelling of ictal EEG

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The Akaike minimum information criterion provides a means to determine the appropriate number of lags in a linear autoregressive model of a time series. We show that the Akaike criterion is closely related to the reliability estimates of successively determined parameters of a linear autoregressive (LAR) model. A similar criterion may be applied to determine whether the addition of a nonlinear term to an LAR model provides a statistically significant improvement in the description of the time series. As an example, we use this method to identify quadratic contributions to a nonlinear autoregressive characterization of a typical 3/s spike and wave seizure discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaike, H. A new look at the statistical model identification. IEEE Trans. Auto. Control AC-19:716–723; 1974.

    Google Scholar 

  2. Babloyantz, A.; Destexhe, A. Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. 83:3513; 1986.

    CAS  PubMed  Google Scholar 

  3. Billings, S.A.; Chen, S. Identification of nonlinear rational systems using a prediction-error estimation algorithm. Int. J. Syst. Sci. 20:467–494; 1989.

    Google Scholar 

  4. Box, G.E.P.; Jenkins, G.M. Time series analysis: Forecasting and control. San Francisco: Holden-Day; 1976.

    Google Scholar 

  5. Dewald, L.S.; Lewis, P.A.W. A new Laplace second-order autoregressive time-series model-NLAR(2) IEEE Trans. Information Theory IT-31:645–651; 1985.

    Google Scholar 

  6. Elul, R. Gaussian behavior of the electroencephalogram: Changes during performance of mental task. Science 164:328–331; 1969.

    CAS  PubMed  Google Scholar 

  7. Gersh, W.; Yonemoto, J. Parametric time series models for multivariate EEG analysis. Comp. Biomed. Res. 10:113–125; 1977.

    Google Scholar 

  8. Kawahara, T. Coupled Van der Pol oscillators—A model of excitatory and inhibitory neural interactions. Biol. Cybern. 39:37–43; 1980.

    Article  CAS  PubMed  Google Scholar 

  9. Korenberg, M.J. Cross-correlation analysis of neural cascades. Proc. 10th Ann. Rocky Mountain Bioeng. Symp., 47–51; 1973.

  10. Korenberg, M. Orthogonal identification of nonlinear difference equation models. Proc. 28th Midwest Symp. Circuit Syst. 1:90–95; 1985.

    Google Scholar 

  11. Korenberg, M. Functional expansions, parallel cascades, and nonlinear difference equations. In Marmarelis, V.Z., ed. Advanced methods of physiological system modelling, Vol. 1. Los Angeles: University of Southern California; 1987: pp. 221–240.

    Google Scholar 

  12. Korenberg, M. Exact orthogonal estimation of kernels with biological applications. Proc. IEEE Conf. Biomed. Technol. 27–30; 1987.

  13. Korenberg, M. Fast orthogonal algorithms for nonlinear system identification and time-series analysis. In: Marmarelis, V.Z., ed. Advanced methods of physiological system modelling, Vol. 2, New York: Plenum Press; 1989:pp. 160–177.

    Google Scholar 

  14. Leontaritis, I.J.; Billings, S.A. Input-output parametric models for non-linear systems. I. Deterministic non-linear systems. Int. J. Control 41:303–328; 1985.

    Google Scholar 

  15. Leontaritis, I.J.; Billings, S.A. Input-output parametric models for non-linear systems. II. Stochastic non-linear systems. Int. J. Control 41:329–344; 1985.

    Google Scholar 

  16. Leontaritis, I.J.; Billings, S.A. Model selection and validation methods for non-linear systems. Int. J. Control 45:311–341; 1987.

    Google Scholar 

  17. Lopes da Silva, F.H.; Hoeks, A.; Smits, H.; Zetterberg, L.H. Model of brain rhythmic activity: The alpha-rhythm of the thalamus. Kybernetik 15:27–37; 1974.

    Article  CAS  PubMed  Google Scholar 

  18. Lopes da Silva, F.H.; van Lierop, T.H.M.T.; Schrijer, C.F.; Storm van Leeuwen, W. Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalog. Clin. Neurophysiol. 35:627–639; 1973.

    Google Scholar 

  19. Marmarelis, P.Z.; Marmarelis, V.Z. Analysis of physiological systems: The white-noise approach. New York: Plenum Press; 1978.

    Google Scholar 

  20. Niedermeyer, E. Epileptic seizure disorders. In: Niedermeyer, E.; Lopes da Silva, F., eds. Electroencephalography: Basic principles, clinical applications, and related fields. Baltimore: Urban and Schwartzenberg; 1983:pp. 339–428.

    Google Scholar 

  21. Saltzberg, B.; Burton, W.D., Jr. Nonlinear filters for tracking chaos in neurobiological time series. In: Marmarelis, V.Z., ed. Advanced methods of physiological system modelling, New York: Plenum Press; 1989:pp. 201–213.

    Google Scholar 

  22. Siegel, A. Stochastic aspects of the generation of the electroencephalogram. J. Theor. Biol. 92:317–339; 1981.

    Article  CAS  PubMed  Google Scholar 

  23. Storm van Leeuwen, W. The alpha rhythm In: Cobb, W.A.; Van Duijn, H., eds. Contemporary clinical neurophysiology (EEG suppl. No. 34). Amsterdam: Elsevier; 1978:pp. 1–7.

    Google Scholar 

  24. Tong, H. Threshold models in non-linear time series analysis. Lecture notes in statistics, vol. 21. D. Brillingeret al.. eds. New York: Springer-Verlag; 1983.

    Google Scholar 

  25. Wilson, H.R.; Cowan, J.D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80; 1973.

    Article  CAS  PubMed  Google Scholar 

  26. Wright, J.J.; Kydd, R.R.; Lees, G.J. State-changes in the brain viewed as linear steady-states and nonlinear transititions between steady-states. Biol Cybern. 53:11–17; 1985.

    Article  CAS  PubMed  Google Scholar 

  27. Yule, G.U. On a method of investigating periodicities in disturbed series with special reference to Wolfer's sunspot numbers. Phil. Trans. Roy. Soc. Lond. A 226:267–298; 1927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Victor, J.D., Canel, A. A relation between the Akaike criterion and reliability of parameter estimates, with application to nonlinear autoregressive modelling of ictal EEG. Ann Biomed Eng 20, 167–180 (1992). https://doi.org/10.1007/BF02368518

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368518

Keywords

Navigation