Skip to main content
Log in

Right ventricular-pulmonary arterial interactions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The application of pulsatile models to hemodynamic data has made possible a more complete understanding of the relationship of pulmonary pressure and flow. To review the genesis of these concepts, the unique characteristics of the pulmonary artery and right ventricle are outlined as a basis for understanding why differences in their pulsatile properties from the systemic circuit must exist. The pulmonary impedance spectrum is introduced and the concept of optimal right ventricular-pulmonary artery coupling is explored based on a review of extensive experimental data. Finally, available studies of normal pulmonary impedance in man and abnormal impedance in human disease states are reviewed, with emphasis on disturbances in optimal ventricular-vascular coupling. The important implications of these concepts for understanding and treatment of cardiovascular disease are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altschuler, J.A.; Laskey, W.K.; Herrmann, H.C.; Kussmaul W.G. Tachycardia alters right ventricular-vascular coupling in mitral stenosis. Circulation 78:II-125; 1988.

    Google Scholar 

  2. Arani, D.T.; Carleton, R.A. The deleterious role of tachycardia in mitral stenosis. Circulation 86:511–516; 1967.

    Google Scholar 

  3. Bergel, D.H.; Milnor, W.R. Pulmonary vascular impedance in the dog. Circ. Res. 16:401–415; 1965.

    CAS  PubMed  Google Scholar 

  4. Caro, C.G.; McDonald, D.A. The relation of pulsatile pressure and flow in the pulmonary vascular bed. J. Physiol. 157:426–453; 1961.

    CAS  PubMed  Google Scholar 

  5. Elkins, R.C.; Milnor, W.R. Pulmonary vascular response to exercise in the dog. Circ. Res. 29:591–599; 1971.

    CAS  PubMed  Google Scholar 

  6. Engelberg, J.; Dubois, A.B. Mechanics of pulmonary circulation in isolated rabbit lungs. Am. J. Physiol. 196:401–414; 1959.

    CAS  PubMed  Google Scholar 

  7. Gurtner, H.P.; Walser, P.; Fassler, B. Normal values for pulmonary hemodynamics at rest and during exercise in man. Prog. Resp. Res. 9:295–315; 1975.

    Google Scholar 

  8. Haneda, T.; Nakajima, T.; Shirato, K.; Onodera, S.; Takishima, T. Effects of oxygen breathing on pulmonary vascular input impedance in patients with pulmonary hypertension. Chest. 83:520–526; 1983.

    CAS  PubMed  Google Scholar 

  9. Hopkins, R.A.; Hammon, J.W.; McHale, P.A.; Smith, P.K.; Anderson, R.W. An analysis of the pulsatile hemodynamic responses of the pulmonary circulation to acute and chronic pulmonary venous hypertension in the awake dog. Circ. Res. 47:902–910; 1980.

    CAS  PubMed  Google Scholar 

  10. Janicki, J.S.; Weber, K.T.; Likoff, M.J.; Fishman, A.P. The pressure-flow response of the pulmonary circulation in patients with heart failure and pulmonary vascular disease. Circulation 72:1270–1278; 1985.

    CAS  PubMed  Google Scholar 

  11. Kussmaul, W.G.; Wieland, J.M.; Laskey, W.K. Pressure flow relations in the pulmonary artery during myocardial ischemia: Implications for right ventricular function in coronary artery disease. Cardiovasc. Res. 22:627–638; 1988.

    CAS  PubMed  Google Scholar 

  12. Laskey, W.K.; Kussmaul, W.G.; Martin, J.L.; Kleaveland, J.P.; Hirshfeld, J.W.; Shroff, S. Characteristics of vascular hydraulic load in patients with heart failure. Circulation 72:61–71; 1985.

    CAS  PubMed  Google Scholar 

  13. Laskey, W.K.; Kussmaul, W.G. Arterial wave reflection in heart failure. Circulation 75:711–721; 1987.

    CAS  PubMed  Google Scholar 

  14. Lucas, C.L.; Radke, N.F.; Wilcox, B.R.; Henry, G.W.; Keagy, B.A. Maturation of pulmonary input impedance spectrum in infants and children with ventricular septal defect. Am. J. Cardiol. 57:821–827; 1986.

    Article  CAS  PubMed  Google Scholar 

  15. Mills, C.J.; Gabe, I.T.; Gault, J.H.; Mason, D.T.; Ross, J., Jr.; Braunwald, E.; Shillingford, J.P. Pressure-flow relationships and vascular impedance in man. Cardio. Res. 4:405–417; 1970.

    CAS  Google Scholar 

  16. Milnor, W.R.; Bergel, D.H.; Bargainer, J.D. Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ. Res. 19:467–480; 1966.

    CAS  PubMed  Google Scholar 

  17. Milnor, W.R.; Conti, C.R.; Lewis, K.B.; O'Rourke, M.F. Pulmonary artery pulse wave velocity and impedance in man. Circ. Res. 25:637–649; 1969.

    CAS  PubMed  Google Scholar 

  18. Milnor, W.R. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570; 1975.

    CAS  PubMed  Google Scholar 

  19. Morrison, D.; Sorensen, S.; Caldwell, J.; Wright, A.L.; Ritchie, J.; Kennedy, J.W.; Hamilton, G. The normal right ventricular response to supine exercise. Chest. 6:686–691; 1982.

    Google Scholar 

  20. Murgo, J.P.; Altobelli, S.A.; Dorethy, J.F.; Logsdon, J.R.; McGranahan, G.M. Normal ventricular ejection dynamics in man during rest and exercise. Am. Heart Assoc. Monog. 46:92–101; 1975.

    Google Scholar 

  21. Murgo, J.P.; Westerhof, N.; Giolma, J.P.; Altobelli, S.A. Aortic input impedance in normal man: Relationship to pressure wave forms. Circulation 62:105–115; 1980.

    CAS  PubMed  Google Scholar 

  22. Murgo, J.P.; Westerhof, N.; Giolma, J.P.; Altobelli, S.A. Effects of exercise on aortic input impedance and pressure wave forms in normal humans. Circ. Res. 48:334–343; 1981.

    CAS  PubMed  Google Scholar 

  23. Murgo, J.P.; Westerhof, N. Input impedance of the pulmonary arterial system in normal man. Circ. Res. 54:666–673; 1984.

    CAS  PubMed  Google Scholar 

  24. O'Rourke, M. Vascular impedance in studies of arterial and cardiac function. Physiol. Rev. 62:570–623; 1982.

    PubMed  Google Scholar 

  25. Pace, J.B. Sympathetic control of pulmonary vascular impedance in anesthetized dogs. Circ. Res. 29:555–568; 1971.

    CAS  PubMed  Google Scholar 

  26. Pace, J.B.; Cox, R.H.; Alvarez-Vara, F.; Karreman, G. Influence of sympathetic nerve stimulation on pulmonary hydraulic input power. Am. J. Physiol. 222:196–201; 1972.

    CAS  PubMed  Google Scholar 

  27. Pasipoularides, A. Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. J. Am. Coll. Cardiol. 15:859–882; 1990.

    CAS  PubMed  Google Scholar 

  28. Patel, D.J.; DeFreitas, F.M.; Fry, D.L. Hydraulic input impedance to aorta and pulmonary artery in dogs. J. Appl. Physiol. 18:134–140; 1963.

    CAS  PubMed  Google Scholar 

  29. Piene, H. The influence of pulmonary blood flow rate on vascular input impedance and hydraulic power in the sympathetically and noradrenaline stimulated cat lung. Act. Physiol. Scand. 98:44–53; 1976.

    CAS  Google Scholar 

  30. Piene, H.; Sund, T. Flow and power output of right ventricle facing load with variable input impedance. Am. J. Physiol. 237:H125-H130; 1979.

    CAS  PubMed  Google Scholar 

  31. Piene, H. Interaction between the right heart ventricle and its arterial load: A quantitative solution. Am. J. Physiol. 238:H932-H937; 1980.

    CAS  PubMed  Google Scholar 

  32. Piene, H.; Sund, T. Does normal pulmonary impedance constitute the optimum load for the right ventricle? Am. J. Physiol. 242:H154-H160; 1982.

    CAS  PubMed  Google Scholar 

  33. Piene, H. Right ventricular function in relation to pulmonary arterial impedance. In: Suga, K.; Baan, J.; Yellin, E., eds: Cardiac mechanics and function in the normal and diseased heart. New York: Springer-Verlag; 1989: pp. 211–224.

    Google Scholar 

  34. Pollack, G.H.; Reddy, R.V.; Noordergraaf, A. Input impedance, wave travel and reflections in the human pulmonary arterial tree: Studies using an electrical analog. Trans. Biomed. Eng. BME 15:151–164; 1968.

    CAS  Google Scholar 

  35. Pouleur, H.; Lefevre, J.; van Eyll, C.; Jaumin, P.M.; Charlier, A.A. Significance of pulmonary input impedance in right ventricular performance. Cardio. Res. 12:617–629; 1978.

    CAS  Google Scholar 

  36. Reuben, S.R.; Kitchin, A.H.. Pulmonary artery input impedance in pulmonary hypertension. Prog. Resp. Res. 9:261–266; 1975.

    Google Scholar 

  37. Reuben, S.R.; Swadling, J.P.; Gersh, B.J.; Lee, G. Impedance and transmission properties of the pulmonary arterial system. Cardiovasc. Res. 5:1–9; 1971.

    Google Scholar 

  38. Stanek, V.; Widimsky, J.; Degre, S.; Denolin, H. The lesser circulation during exercise in healthy subjects. Prog. Resp. Res. 9:1–9; 1975.

    Google Scholar 

  39. Vanden Bos, G.C.; Westerhof, N.; Randall, O.S. Pulse wave reflection: Can it explain the differences between systemic and pulmonary pressure and flow waves? Circ. Res. 51:479–485; 1982.

    PubMed  Google Scholar 

  40. Westerhof, N.; Sipkema, P.; Van Den Bos, G.C.; Elzinga, C. Forward and backward waves in the arterial system. Cardio. Res. 6:648–656; 1972.

    CAS  Google Scholar 

  41. Wiener, F.; Morkin, E.; Skalak, R.; Fishman, A.P. Wave propagation in the pulmonary circulation. Circ. Res. 19:834–850; 1966.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kussmaul, W.G., Noordergraaf, A. & Laskey, W.K. Right ventricular-pulmonary arterial interactions. Ann Biomed Eng 20, 63–80 (1992). https://doi.org/10.1007/BF02368506

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368506

Keywords

Navigation