Advertisement

Annals of Biomedical Engineering

, Volume 20, Issue 1, pp 3–17 | Cite as

Cardiac mechanics: Basic and clinical contemporary research

  • Ares Pasipoularides
Article

Abstract

This survey of cardiac hemodynamics updates evolving concepts of myocardial and ventricular systolic and diastolic loading and function. The pumping action of the heart and its interactions with arterial and venous systems in health and disease provide an extremely rich and challenging field of research, viewed from a fluid dynamic perspective. Many of the more important problems in this field, even if the fluid dynamics in them are considered in isolation, are found to raise questions which have not been asked in the history of fluid dynamics research. Biomedical engineering will increasingly contribute to their solution.

Keywords

Cardiac mechanics Hemodynamics Ventricular function Myocardium Systole Ventricular ejection Diastole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, D.G.; Kurihara, S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. 327:79–94; 1982.PubMedGoogle Scholar
  2. 2.
    Appleton, C.P.; Hatle, L.K.; Popp, R.L. Relation of transmitral flow velocity patterns to left ventricular diastolic function: New insights from a combined hemodynamic and Doppler echocardiographic study. J. Am. Coll. Cardiol. 12:426–440; 1988.PubMedGoogle Scholar
  3. 3.
    Bird, J.J.; Murgo, J.P.; Pasipoularides, A. Fluid dynamics of aortic stenosis: Subvalvular gradients without subvalvular obstruction. Circulation 66:835–840; 1982.PubMedGoogle Scholar
  4. 4.
    Bloomfield, M.E.; Gold, L.D.; Reddy, R.V.; Katz, A.I.; Moreno, A.H. Thermodynamic characterization of the contractile state of the myocardium. Circ. Res. 30:520–534; 1972.PubMedGoogle Scholar
  5. 5.
    Boom, H.B.K.; Wijkstra, H. The step response of left ventricular pressure to ejection flow: A system oriented approach. Ann. Biomed. Eng. 20:99–126; 1992.PubMedGoogle Scholar
  6. 6.
    Caldini, P.; Permutt, S.; Waddell, J.A.; Riley, R.L. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ. Res. 34:606–623; 1974.PubMedGoogle Scholar
  7. 7.
    Coleman, T.G.; Manning, R.D., Jr.; Norman, R.A., Jr.; Guyton, A.C. Control of cardiac output by regional blood flow distribution. Ann. Biomed. Eng. 2:149–163; 1974.CrossRefGoogle Scholar
  8. 8.
    Condos, W.R., Jr.; Latham, R.D.; Hoadley, S.D.; Pasipoularides, A. Hemodynamics of the Mueller maneuver in man: Right and left heart micromanometry and Doppler echocardiography. Circulation 76:1020–1028; 1987.PubMedGoogle Scholar
  9. 9.
    DeMaria, A.N.; Wisenbaugh, T. Identification and treatment of diastolic dysfunction: Role of transmitral Doppler recordings. J. Am. Coll. Cardiol. 9:1106–1107; 1987.PubMedGoogle Scholar
  10. 10.
    Devereux, R.B. Toward a more complete understanding of left ventricular afterload. J. Am. Coll. Cardiol. 17:122–124; 1991.PubMedGoogle Scholar
  11. 11.
    Edman, K.A.P.; Nilsson, E. The mechanical parameters of myocardial contraction studied at a constant length of the contractile element. Acta Physiol. Scand. 72:205–219; 1968.PubMedGoogle Scholar
  12. 12.
    Frank, O. On the dynamics of cardiac muscle. Am. Heart J. 58:282–317, 467–478; 1959.Google Scholar
  13. 13.
    Fung, Y.C. Biomechanics: Mechanical properties of living tissues. New York: Springer-Verlag; 1981.Google Scholar
  14. 14.
    Gault, J.H.; Ross, J., Jr.; Braunwald, E. Contractile state of the left ventricle in man. Circ. Res. 22:451–463; 1968.PubMedGoogle Scholar
  15. 15.
    Gelpi, R.J.; Pasipoularides, A.; Lader, A.S.; Patric, T.A.; Chase, N.; Hittinger, L.; Shannon, R.P.; Bishop, S.P.; Vatner, S.F. Changes in diastolic cardiac function in developing and stable perinephritic hypertension in conscious dogs. Circ. Res. 68:555–567; 1991.PubMedGoogle Scholar
  16. 16.
    Georgiadis, J.G.; Wang, M.; Pasipoularides, A. Computational fluid dynamics of left ventricular ejection. Ann. Biomed. Eng. 20:81–97; 1992.PubMedGoogle Scholar
  17. 17.
    Gilbert, J.C.; Glantz, S.A. Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ. Res. 64:827–852; 1989.PubMedGoogle Scholar
  18. 18.
    Glantz, S.A.; Parmley, W.W. Factors which affect the diastolic pressure-volume curve. Circ. Res. 42:171–180; 1978.PubMedGoogle Scholar
  19. 19.
    Hatle, L.K.; Appleton, C.P.; Popp, R.L. Differentiation of constrictive pericarditis and restrictive cardiomyopathy by Doppler echocardiography. Circulation 79:357–370; 1989.PubMedGoogle Scholar
  20. 20.
    Hibberd, M.G.; Jewell, B.R. Calcium- and length-dependent force production in rat ventricular muscle. J. Physiol. 329:527–540; 1982.PubMedGoogle Scholar
  21. 21.
    Hoadley, S.D.; Pasipoularides, A. Are ejection phase Doppler/echo indices sensitive markers of contractile dysfunction in cardiomyopathy? Role of afterload mismatch. Circulation 76:Supplement IV-404; 1987.Google Scholar
  22. 22.
    Hunter, W.C.; Janicki, J.S.; Weber, K.T.; Noordergraaf, A. Systolic mechanical properties of the left ventricle. Effects of volume and contractile state. Circ. Res. 52:319–327; 1983.PubMedGoogle Scholar
  23. 23.
    Isaaz, K.; Pasipoularides, A. Noninvasive assessment of intrinsic ventricular load dynamics in dilated cardiomopathy. J. Am. Coll. Cardiol. 17:112–121; 1991.PubMedGoogle Scholar
  24. 24.
    Jacob, R.; Weigand, K.H. Die endsystolischen Druck- Volumenbeziehungen als Grund-lage einer Beurteilung der Kontraktilitaet des linken Ventrikels in situ. Pfluegers Archiv. 289:37–49; 1966.Google Scholar
  25. 25.
    Jewell, B.R. A reexamination of the influence of muscle length on myocardial performance. Circ. Res. 40:221–230; 1977.PubMedGoogle Scholar
  26. 26.
    Kass, D.A.; Kelly, R.P. Ventriculo-arterial coupling: Concepts, assumptions, and applications. Ann. Biomed. Eng. 20:41–62; 1992.PubMedGoogle Scholar
  27. 27.
    Kussmaul, W.G.; Noordergraaf, A.; Laskey, W.K. Right ventricular-pulmonary arterial interactions. Ann. Biomed. Eng. 20:63–80; 1992.PubMedGoogle Scholar
  28. 28.
    Latham, R.D.; Westerhof, N.; Sipkema, P.; Rubal, B.J.; Reuderink, P.; Murgo, J.P. Regional wave travel and reflections along the human aorta: A study with six simultaneous micromanometric pressures. Circulation 72:1257–1269; 1985.PubMedGoogle Scholar
  29. 29.
    Laxminarayan, S.; Sipkema, P.; Westerhof, N. Characterization of the arterial system in the time domain. IEEE Trans. on Biomed. Eng. 25:177–184; 1978.Google Scholar
  30. 30.
    Maughan, W.L.; Shoukas, A.A.; Sagawa, K.; Weisfeldt, M.L. Instantaneous pressure-volume relationship of the canine right ventricle. Circ. Res. 44:309–315; 1979.PubMedGoogle Scholar
  31. 31.
    McKay, R.G.; Aroesty, J.M.; Heller, G.V.; Royal, H.D.; Warren, S.E.; Grossman, W. Assessment of the end-systolic pressure-volume relationship in human beings with the use of a time-varying elastance model. Circulation 74:97–104; 1986.PubMedGoogle Scholar
  32. 32.
    Milnor, W.R. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570; 1975.PubMedGoogle Scholar
  33. 33.
    Mirsky, I. Assessment of passive elastic stiffness of cardiac muscle: Mathematical concepts, physiologic and clinical considerations, directions of future research Prog. Cardiovas. Diseases 18:277–308; 1976.Google Scholar
  34. 34.
    Mirsky, I.; Pasipoularides, A. Elastic properties of normal and hypertrophied cardiac muscle. Fed. Proc. 39:156–161; 1980.PubMedGoogle Scholar
  35. 35.
    Mirsky, I.; Pasipoularides, A. Clinical assessment of diastolic function Prog. Cardiovas. Diseases 32:291–318; 1990.Google Scholar
  36. 36.
    Mirsky, I.; Rankin, J.S. The effects of geometry, elasticity, and external pressures on the diastolic pressure-volume and stiffness-stress relations. Circ. Res. 44:601–611; 1979.PubMedGoogle Scholar
  37. 37.
    Murgo, J.P.; Westerhof, N.; Giolma, J.P.; Altobelli, S.A. Aortic input impedance in normal man: Relationship to pressure wave forms. Circulation 62:105–116; 1980.PubMedGoogle Scholar
  38. 38.
    Myreng, Y.; Smiseth, O.A. Assessment of left ventricular relaxation by Doppler echocardiography. Comparison of isovolumic relaxation time and transmitral flow velocities with time constant of isovolumic relaxation. Circulation 81:260–266; 1990.PubMedGoogle Scholar
  39. 39.
    Nichols, W.W.; Conti, C.R.; Walker, W.E.; Milnor, W.R. Input impedance of the systemic circulation in man. Circ. Res. 40:451–458; 1977.PubMedGoogle Scholar
  40. 40.
    Nikolic, S.; Yellin, E.L.; Tamura, K.; Tamura, T.; Frater, R.W.M. Effect of early diastolic loading on myocardial relaxation in the intact canine left ventricle. Circ. Res. 66:1217–1226; 1990.PubMedGoogle Scholar
  41. 41.
    Noble, M.I.M.; Trenchard, D.; Guz, A. Left ventricular ejection in conscious dogs: 1. Measurement and significance of the maximum acceleration of blood from the left ventricle. Circ. Res. 19:139–147; 1966.Google Scholar
  42. 42.
    Nolan, S.P.; Dixon, S.H.; Fisher, R.D.; Morrow, A.G. The influence of atrial contraction and mitral valve mechanics on ventricular filling. A study of instantaneous mitral valve flowin vivo. Am. Heart J. 77:784–791; 1969.CrossRefPubMedGoogle Scholar
  43. 43.
    Olsen, C.O.; Van Trigt, P.; Rankin, J.S. Dynamic geometry of the intact left ventricle. Fed. Proc. 40:2023–2030; 1981.PubMedGoogle Scholar
  44. 44.
    Pasipoularides, A. On mechanisms of improved ejection fraction by early reperfusion in acute myocardial infarction: Myocardial salvage or infarct stiffening?. J. Am. Coll. Cardiol. 12:1037–1038; 1988.PubMedGoogle Scholar
  45. 45.
    Pasipoularides, A. Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. J. Am. Coll. Cardiol. 15:859–882; 1990.PubMedGoogle Scholar
  46. 46.
    Pasipoularides, A.; Kussmaul, W.G.; Myers, B.S.; Doherty, B.J.; Stoughton, T.L.; Laskey, W.K. Phasic characteristics of transaortic pressure gradients in valvular stenosis. J. Am. Coll. Cardiol. 17:254A; 1991.Google Scholar
  47. 47.
    Pasipoularides, A.; Miller, J.; Rubal, B.J.; Murgo, J.P. Left ventricular ejection dynamics in normal man. In: Melbin, J.; Noordergraaf, A., eds. Proceedings of the VIth International Conference and Workshop of the Cardiovascular System Dynamics Society. Philadelphia: University of Pennsylvania; 1984: pp. 45–48.Google Scholar
  48. 48.
    Pasipoularides, A.; Mirsky, I. Models and concepts of diastolic mechanics: Pitfalls in their misapplication. Math. Comput. Modelling 11:232–234; 1988.CrossRefGoogle Scholar
  49. 49.
    Pasipoularides, A.; Mirsky, I.; Hess, O.M.; Grimm, J.; Krayenbuehl, H.P. Myocardial relaxation and passive diastolic properties in man. Circulation 74:991–1001; 1986.PubMedGoogle Scholar
  50. 50.
    Pasipoularides, A.; Mirsky, I.; Hess, O.M.; Krayenbuehl, H.P. Incomplete relaxation and passive diastolic muscle properties in man. Circulation 62:Supplement III 205; 1980.Google Scholar
  51. 51.
    Pasipoularides, A.; Murgo, J.P. Ejection dynamics in man with and without outflow obstruction. In: Proceedings of the 20th Annual Meeting of the Association for the Advancement of Medical Instrumentation. Boston:AAMI. 1985: p. 68.Google Scholar
  52. 52.
    Pasipoularides, A.; Murgo, J.P.; Bird, J.J.; Craig, W.E. Fluid dynamics of aortic stenosis: Mechanisms for the presence of subvalvular pressure gradients. Am. J. Phsyiol. 246:H542-H550; 1984.Google Scholar
  53. 53.
    Pasipoularides, A.; Murgo, J.P.; Miller, J.W.; Craig, W.E. Nonobstructive left ventricular ejection pressure gradients in man. Circ. Res. 61:220–227; 1987.PubMedGoogle Scholar
  54. 54.
    Pasipoularides, A.; Murgo, J.P.; Westerhof, N. Aortic input impedance and pressure waveforms in man. In: Proceedings of the 19th Annual Meeting of the Association for the Advancement of Medical Instrumentation. Washington, DC:AAMI. 1984: p. 64.Google Scholar
  55. 55.
    Pasipoularides, A.; Palacios, I.; Frist, W.; Rosenthal, S.; Newell, J.B.; Powell, W.J., Jr. Contribution of activation-inactivation dynamics to the impairment of relaxation in hypoxic cat papillary muscle Am. J. Physiol. 248:R54-R62; 1985.PubMedGoogle Scholar
  56. 56.
    Rushmer, R.F.; Watson, N.; Harding, D.; Baker, D. Effects of acute coronary occlusion on performance of right and left ventricles in intact unanesthetized dogs. Am. Heart J. 66:522–525; 1963.CrossRefPubMedGoogle Scholar
  57. 57.
    Sarnoff, S.J.; Mitchell, J.H. The control of the function of the heart. In: Hamilton, W.F., ed. Handbook of Physiology. Washington, D.C.: Am. Physiol. Society; 1962: Sec. II, pp. 1:489–532.Google Scholar
  58. 58.
    Schatz, R.A.; Pasipoularides, A.; Murgo, J.P. The effect of arterial pressure reflections on myocardial supply-demand dynamics. Circulation 64:Supplement IV-324; 1981.Google Scholar
  59. 59.
    Schroff, S.G.; Janicki, J.S.; Weber, K.T. Evidence and quantitation of left ventricular systolic resistance. Am. J. Physiol. 249:H358-H370; 1985.Google Scholar
  60. 60.
    Shim, Y.; Pasipoularides, A.; Hampton, T.G.; Harrison, J.K.; Spero, L.A.; Harding, M.B.; Bashore, T.M. Ventricular ejection load changes after balloon aortic valvuloplasty. (submitted).Google Scholar
  61. 61.
    Shoucri, R.M.; Dumesnil, J.G. The dynamics of the ventricular wall and some observations on blood flow. Biophys. J. 23:233–245; 1978.PubMedGoogle Scholar
  62. 62.
    Stein, P.D.; Sabbah, H.N. Evaluation of left ventricular function during ejection. Ann. Biomed. Eng. 20:127–138; 1992.PubMedGoogle Scholar
  63. 63.
    Suga, H.; Sagawa, K.; Demer, L. Determination of instantaneous pressure in canine left ventricle: Time and volume specification. Circ. Res. 46:256–263; 1980.PubMedGoogle Scholar
  64. 64.
    Thomas, J.D.; Choong, C.Y.P.; Flachskampf, F.A.; Weyman, A.E. Analysis of the early transmitral Doppler velocity curve: Effect of primary physiologic changes and compensatory preload adjustment. J. Am. Coll. Cardiol. 16:644–655; 1990.PubMedGoogle Scholar
  65. 65.
    Thomas, J.D.; Weyman, A.E. Fluid dynamics model of mitral valve flow: Description within vitro validation. J. Am. Coll. Cardiol. 13:221–233; 1989.PubMedGoogle Scholar
  66. 66.
    Thomas, J.D.; Weyman, A.E. Numerical modelling of ventricular filling. Ann. Biomed. Eng. 20:19–39; 1992.PubMedGoogle Scholar
  67. 67.
    Vaartjes, S.R.; Boom, H.B.K. Left ventricular internal resistance and unloaded ejection flow assessed from pressure-flow relations: A flow-clamp study on isolated rabbit hearts. Circ. Res. 60:727–737; 1987.PubMedGoogle Scholar
  68. 68.
    Vatner, S.F.; Pagani, M.; Manders, W.T.; Pasipoularides, A. Alpha adrenergic vasoconstriction and nitroglycerin vasodilation of large coronary arteries in the conscious dog. J. Clin. Invest. 65:5–14; 1980.PubMedGoogle Scholar
  69. 69.
    Wiggers, C.J. Circulatory dynamics. Physiologic studies. New York: Grune and Stratton; 1952.Google Scholar
  70. 70.
    Yellin, E.L.; Nikolic, S.; Frater, R.W.M. Left ventricular filling dynamics and diastolic function. Prog. Cardiovas. Diseases 32:247–271; 1990.Google Scholar

Copyright information

© Pergamon Press plc 1992

Authors and Affiliations

  • Ares Pasipoularides
    • 1
  1. 1.Departments of Biomedical Engineering and MedicineDuke University and Duke University Medical CenterDurham

Personalised recommendations