Skip to main content
Log in

Quantitation of ventilation in terms of continuous airflow variables

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The commonly used respiratory variables, minute volume, tidal volume and respiratory rate are discontinuous measures, and thus of limited capability to quantitate transient respiratory responses. Continuity in description is obtained by characterizing the tracheal airflow by two continuously defined variables, instantaneous amplitude,A(t), and instantaneous frequency,F(t), which can experimentally be uniquely determined at a sampling rate independent of the respiratory rate. The two variables are conceptual extensions of currently used discontinuous measures, i.e., the time average ofF(t) recovers respiratory rate, and the time average ofA(t) divided by π closely approximates minute volume. These asymptotic relations were experimentally verified in four human subjects and for different ventilatory states. Respiratory rate and averageF(t) agreed within a relative error of less than 1%. Minute volume was determined from the averageA(t) with an error, slightly dependent on the airflow pattern, of less than 6%. Since the conventionally used quantitation can always be retrieved from the continuous one,A(t) andF(t) may be employed whenever conventional methods break down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Band, D. M., Cameron, I. R., andSemple, S. J. G. The effect on respiration of abrupt changes in carotid artery pH and PCO2 in the cat.Journal of Physiology (London) 1970,211, 479–494.

    CAS  Google Scholar 

  • Beaver, W. L., andWasserman, K. Transients in ventilation at start and end of exercise.Journal of Applied Physiology 1968,25, 390–399.

    Google Scholar 

  • Black, A. M. S., andTorrance, R. W. Chemoreceptor effects in the respiratory cycle.Journal of Physiology (London) 1967,189, 59–61 P.

    Google Scholar 

  • Black, A. M. S., andTorrance, R. W. Respiratory oscillations in chemoreceptor discharge in the control of breathing.Respiratory Physiology 1971,13, 221–237.

    CAS  Google Scholar 

  • Cohen, M. I. Discharge patterns of brain-stem respiratory neurons during Hering-Breuer reflex evoked by lung inflation.Journal of Neurophysiology 1969,32, 356–374.

    CAS  PubMed  Google Scholar 

  • Collier, C. R., Affeldt, J. andFarr, A. F. Continuous rapid infrared CO2 analyses. Fractional sampling and accuracy in determining alveolar CO2.Journal of Laboratory & Clinical Medicine 1955,45, 526–539.

    CAS  Google Scholar 

  • Davenport, S. B. andRoot, W. L. An introduction to the theory of random signals and noise. New York: McGraw-Hill Book Company, 1958, Pp. 277–288.

    Google Scholar 

  • Dejours, P., Labrousse, Y. Raynaud, J. etTeillac, A. Stimulus oxygène chémoréflexe de la ventilation a basse altitude (50 m) chez l'homme.-1 au repos.Journal de Physiologie (Paris) 1957,41, 115–120.

    Google Scholar 

  • Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation.Journal of Physiology (London) 1972,222, 319–333.

    CAS  Google Scholar 

  • Fitzgerald, R. S., Zajtchuk, J. T., Penman, R. W. B., andPerkins, J. Ventilatory response to transient perfusion of carotid chemoreceptors.American Journal of Physiology 1964,207, 1305–1313.

    CAS  PubMed  Google Scholar 

  • Fitzgerald, R. S., Gross, N., andDutton, R. E. Ventilatory responses to transient acidic and hypercapnic vertebral artery infusions.Respiratory Physiology 1968,4, 387–395.

    Article  CAS  Google Scholar 

  • Fleisch, A. Der Pneumotachograph: ein Apparat zur Geschwindigkeitsregistrierung der Atemluft.Pflugers Archiv fuer die Gesamte Physiologie 1925,209, 713–722.

    Google Scholar 

  • Gabor, D. Theory of communication.J. IEE 1946,93, pt. 3, 429–457.

    Google Scholar 

  • Girard, F., Teillac, A., Lefrancois, R. andLacaisse, A. Etude du stimulus oxygène de la ventilation en hypoxie aiguë.Journal de Physiologie (Paris) 1959,51, 469–470.

    CAS  Google Scholar 

  • Goldman, S. Frequency analyses, modulation and noise. New York: McGraw-Hill Book Company 1948. Pp. 146–149.

    Google Scholar 

  • Kaiser, J. F. Digital filters.In F. F. Kuo and J. F. Kaiser (Eds.),System analysis by digital computers. New York: Wiley and Sons, Inc., 1966, Pp. 218–285.

    Google Scholar 

  • Kuo, F. F., and Freeny, S. L. Hilbert transforms and modulation theory.Proceedings of the National Electronics Conference Chicago 1962, 51–58.

  • Lambertsen, C. H., Gelfand, R., andKemp, R. A. Dynamic response characteristics of several CO2-reactive components of the respiratory control system.In C. McC. Brooks, F. F. Kao, and B. B. Lloyd (Eds.),Cerebrospinal fluid and the Regulation of Ventilation. Oxford: Blackwell Scientific Publications 1965, Pp. 211–240.

    Google Scholar 

  • Lambertsen, C. J., andGelfand, R.. Breath-by-breath measurement of respiratory functions; instrumentation and applications.Journal of Applied Physiology 1966,21, 282–290.

    CAS  PubMed  Google Scholar 

  • McCall, C. B., Hyatt, R. E., Noble, F. W., andFry, D. L. Harmonic content of certain respiratory flow phenomena of normal individuals.Journal of Applied Physiology 1957,10, 215–218.

    CAS  PubMed  Google Scholar 

  • Osborn, J. J., Elliott, S. E., Segger, F. J., andGerbode, F. Continuous measurement of lung mechanics and gas exchange in the critically ill.Medical Research Engineering 1969, May–June, 19–32.

    Google Scholar 

  • Papoulis, A. The Fourier integral and its applications. New York: McGraw-Hill Book Company, 1962. Pp. 192–201.

    Google Scholar 

  • Ruttimann, U. E. The characterization of respiratory response to CO 2 by continuous measurements of amplitude and frequency of airflow. (Ph. D. thesis). Philadelphia: University of Pennsylvania, 1972. Pp. 101–106.

    Google Scholar 

  • Ruttimann, U. E., andYamamoto, W. S. Respiratory airflow patterns that satisfy power and force criteria of optimality.Annals of Biomedical Engineering, 1972,1, 146–159.

    CAS  PubMed  Google Scholar 

  • Salmoiraghi, G. C., andBurns, B. D. Localization and patterns of discharge of respiratory neurones in brain-stem of cat.Journal of Neurophysiology 1960 a,23, 2–13.

    CAS  PubMed  Google Scholar 

  • Salmoiraghi, G. C., andBurns, B. D. Notes on mechanism of rhythmic respiration.Journal of Neurophysiology 1960 b,23, 14–26.

    CAS  PubMed  Google Scholar 

  • Salmoiraghi, G. C., andBurns, B. D. Repetitive firing of respiratory neurones during their burst activity.Journal of Neurophysiology 1960 c,23, 27–46.

    PubMed  Google Scholar 

  • Yamamoto, W. S. Theory of measurement of respiratory response.Journal of Applied Physiology 1968,25, 439–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a Grant HE-09284 from the National Heart and Lung Institute. The experimental work was done in the Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19174.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruttimann, U.E., Yamamoto, W.S. Quantitation of ventilation in terms of continuous airflow variables. Ann Biomed Eng 2, 239–251 (1974). https://doi.org/10.1007/BF02368495

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368495

Keywords

Navigation