Skip to main content
Log in

The identification of nonlinear biological systems: Wiener kernel approaches

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Detection, representation, and identification of nonlinearities in biological systems are considered. We begin by briefly but critically examining a well-known test of system nonlinearity, and point out that this test cannot be used to prove that a system is linear. We then concentrate on the representation of nonlinear systems by Wiener's orthogonal functional series, discussing its advantages, limitations, and biological applications. System identification through estimating the kernels in the functional series is considered in detail. An efficient time-domain method of correcting for coloring in inputs is examined and shown to result in significantly improved kernel estimates in a biologically realistic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, J.F. The use of functionals in the analysis of nonlinear physical systems. J. Elect. Control. 15:567–615; 1963.

    Google Scholar 

  2. Barrett, J.F. Functional series representation of nonlinear systems—some theoretical comments. IFAC Symp. Ident. Sys. Param. Est. 1:251–256; 1982.

    Google Scholar 

  3. Bedrosian, E.; Rice, S.O. The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc. IEEE 59:1688–1707; 1971.

    Google Scholar 

  4. Billings, S.A. An overview of nonlinear systems identification. IFAC Symp. Ident. Sys. Param. Est. 1:725–729; 1985.

    Google Scholar 

  5. Billings, S.A.; Fakhouri, S.Y. Identification of systems containing linear dynamic and static nonlinear elements. Automatica. 18:15–26; 1982.

    Article  Google Scholar 

  6. Billings, S.A.; Voon, W.S.F. Structure detection and model validity tests in the identification of nonlinear systems. IEE Proc. 130, Part D:193–199; 1983.

    Google Scholar 

  7. Billings, S.A.; Voon, W.S.F. Correlation based model validity tests for non-linear models. Int. J. Control. 44:235–244; 1986.

    Google Scholar 

  8. Bose, A.G. A theory of nonlinear systems. MIT Res. Lab. Elec. Tech. Rep. No. 309, 1956.

  9. Emerson, R.C.; Citron, M.C.; Vaughn, W.J.; Klein, S.A. Nonlinear directionally selective subunits in complex cells of cat striate cortex. J. Neurophysiol. 58:33–65; 1987.

    CAS  PubMed  Google Scholar 

  10. Emerson, R.C.; Korenberg, M.J.; Citron, M.C. Measurement of a simple-cell threshold function in cat's striate cortex. Soc. Neurosci. Abstr. 14:899; 1988.

    Google Scholar 

  11. Emerson, R.C.; Korenberg, M.J.; Citron, M.C. Identification of intensive nonlinearities in cascade models of visual cortex and its relation to cell classification. In: Marmarelis, V.Z., ed. Advanced methods of physiological system modeling, Vol. 2. New York: Plenum Press; 1989: pp. 97–111.

    Google Scholar 

  12. Frechet, M. Sur les fonctionnelles continues. Annales Scientifiques de l'Ecole Normal Superieure. 27:193–219; 1910.

    Google Scholar 

  13. French, A.S. Measuring the Wiener kernels of a nonlinear system by use of the fast Fourier transform and Walsh functions. Proc. 1st Symp. Testing Ident. Nonlin. Sys. 1:76–88; 1975.

    Google Scholar 

  14. French, A.S.; Butz, E.G. Measuring the Wiener kernels of a nonlinear system using the fast Fourier transform algorithm. Int. J. Contr. 17:529–539; 1973.

    Google Scholar 

  15. French, A.S.; Butz, E.G. The use of Walsh functions in the Wiener analysis of nonlinear systems. IEEE Trans. Comp. 23:225–232; 1974.

    Google Scholar 

  16. French, A.S.; Korenberg, M.J. A nonlinear cascade model for action potential encoding in an insect sensory neuron. Biophys. J. 55:655–661; 1989.

    CAS  PubMed  Google Scholar 

  17. Goussard, Y. Identification de systemes nonlineaires, representes par developpements fonctionnels et soumis a diverses entree aleatoires, a l'aide d'une methode d'approximation stochastique. These de Docteur-Ingenieur, Universite de Paris-Sud, Centre d'Orsay; 1983.

  18. Goussard, Y. Wiener kernel estimation: A comparison of cross-correlation and stochastic approximation methods. In: Marmarelis, V.Z., ed. Advanced methods of physiological system modeling. Los Angeles: USC Biomedical Simulations Resource, vol. 1; 1987: pp. 289–302.

    Google Scholar 

  19. Goussard, Y.; Krenz, W.C.; Stark, L. An improvement of the Lee and Schetzen cross-correlation method. IEEE Trans. Automat. Contr. 30:895–898; 1985.

    Article  Google Scholar 

  20. Haber, R. Nonlinearity tests for dynamic processes. IFAC Symp. Ident. Sys. Param. Est. 1:409–413; 1985.

    Google Scholar 

  21. Haber, R. Structure identification of block-oriented models based on the Volterra kernels. IFAC Symp. Ident. Sys. Param. Est. (Appendix); 1985.

  22. Hunter, I.W. Experimental comparison of Wiener and Hammerstein cascade models of frog muscle fiber mechanics. Biophys. J. 49:81a; 1986.

    Google Scholar 

  23. Hunter, I.W.; Kearney, R.E. Generation of random sequences with jointly specified probability density and autocorrelation functions. Biol. Cybern. 47:141–146; 1983.

    Article  CAS  PubMed  Google Scholar 

  24. Hunter, I.W.; Kearney, R.E. Two-sided linear filter identification. Med. Biol. Eng. Comput. 21:203–209; 1983.

    CAS  PubMed  Google Scholar 

  25. Hunter, I.W.; Kearney, R.E. NEXUS: A computer language for physiological systems and signal analysis. Comp. Biol. Med. 14:385–401; 1984.

    Article  CAS  Google Scholar 

  26. Hunter, I.W.; Korenberg, M.J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55:135–144; 1986.

    CAS  PubMed  Google Scholar 

  27. Klein, S.; Yasui, S. Nonlinear systems analysis with non-Gaussian white stimuli: General basis functionals and kernels. IEEE Trans. Inform. Theory. 25:495–500; 1979.

    Article  Google Scholar 

  28. Korenberg, M.J. Cross-correlation analysis of neural cascades. Proc. 10th Annual Rocky Mountain Bioeng. Symp., 47–52; 1973.

  29. Korenberg, M.J. Identification of biological cascades of linear and static nonlinear systems. Proc. 16th Midwest Symp. Circuit Theory. 18.2:1–9, 1973.

    Google Scholar 

  30. Korenberg, M.J. Statistical identification of parallel cascades of linear and nonlinear systems. IFAC Symp. Ident. Sys. Param. Est. 1:580–585; 1982.

    Google Scholar 

  31. Korenberg, M.J. Orthogonal identification of nonlinear difference equation models. Midwest Symp. Circuit Sys. 1:90–95; 1985.

    Google Scholar 

  32. Korenberg, M.J. Identifying noisy cascades of linear and static nonlinear systems. IFAC Symp. Ident. Sys. Param. Est. 1:421–426; 1985.

    Google Scholar 

  33. Korenberg, M.J. Functional expansions, parallel cascades and nonlinear difference equations. In: Marmarelis, V.Z. ed. Advanced methods of physiological system modeling. Los Angeles: USC Biomedical Simulations Resource, vol 1; 1987:pp. 221–240.

    Google Scholar 

  34. Korenberg, M.J. Fast orthogonal identification of nonlinear difference equation and functional expansion models. Midwest Symp. Circuit Sys. 1:270–276; 1987.

    Google Scholar 

  35. Korenberg, M.J. Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm. Ann. Biomed. Eng. 16:123–142; 1988.

    Article  CAS  PubMed  Google Scholar 

  36. Korenberg, M.J. A robust orthogonal algorithm for system identification and time-series analysis. Biol. Cybern. 60:267–276; 1989.

    Article  CAS  PubMed  Google Scholar 

  37. Korenberg, M.J. A rapid and accurate method for estimating the kernels of a nonlinear system with lengthy memory. 15th Biennial Symp. Commun. June, 1990; Queen's University, Kingston, Canada, pp. 57–60.

  38. Korenberg, M.J.; Bruder, S.B.; McIlroy, P.J. Exact orthogonal kernel estimation from finite data records: Extending Wiener's identification of nonlinear systems. Ann. Biomed. Eng. 16:201–214; 1988.

    Article  CAS  PubMed  Google Scholar 

  39. Korenberg, M.J.; French, A.S.; Voo, S.K.L. White-noise analysis of nonlinear behavior in an insect sensory neuron: Kernel and cascade approaches. Biol. Cybern. 58:313–320; 1988.

    Article  CAS  PubMed  Google Scholar 

  40. Koenberg, M.J.; Hunter, I.W. The identification nonlinear biological systems: LNL cascade models. Biol. Cybern. 55:125–134; 1986.

    Google Scholar 

  41. Korenberg, M.J.; Sakai, H.M.; Naka, K-I. Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels. J. Neurophysiol. 61:1110–1120; 1989.

    CAS  PubMed  Google Scholar 

  42. Krausz, H.I. Identification of non-linear systems using random impulse train inputs. Biol. Cybern. 19:217–230; 1975.

    Google Scholar 

  43. Lee, Y.W. Contribution of Norbert Wiener to linear theory and nonlinear theory in engineering. In Selected Papers of Norbert Wiener, SIAM, MIT Press, 17–33; 1964.

  44. Lee, Y.W.; Schetzen, M. Measurement of the Wiener kernels of a non-linear system by cross-correlation. Int. J. Control. 2:237–254; 1965.

    Google Scholar 

  45. Leontaritis, I.J.; Billings, S.A. Input-output parametric models for nonlinear systems; Part I—Deterministic nonlinear systems; Part II—Stochastic nonlinear systems. Int. J. Control. 41:303–359; 1985.

    Google Scholar 

  46. Marmarelis, P.Z.; Marmarelis, V.Z. Analysis of physiological systems. New York: Plenum Press; 1978.

    Google Scholar 

  47. Marmarelis, P.Z.; Naka, K.I. White-noise analysis of a neuron chain: An application of the Wiener theory. Science. 175:1276–1278; 1972.

    CAS  PubMed  Google Scholar 

  48. Marmarelis, P.Z.; Naka, K.I. Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. J. Neurophys. 36:605–648; 1973.

    CAS  Google Scholar 

  49. Marmarelis, V.Z. Identification of nonlinear systems through quasi-white test signals. Pasadena California: Calif. Inst. Tech.; 1976. Ph.D. Thesis.

    Google Scholar 

  50. Marmarelis, V.Z.; McCann, G.D. A family of quasi-white random signals and its optimal use in biological system identification. Part II: Application to the photoreceptor of Calliphora Erythrocephala. Biol. Cybern. 27:57–62; 1977.

    CAS  PubMed  Google Scholar 

  51. McIlroy, P.J.H. Applications of nonlinear systems identification. Kingston, Ontario, Canada: Queen's University; 1986. MSc Thesis.

    Google Scholar 

  52. Melton, R.B.; Kroeker, J.P. Wiener functional for an N-level uniformly distributed discrete random process. IFAC Symp. Ident. Sys. Param. Est. 2:1169–1174; 1982. Cybern. 34:49–52; 1979.

    Google Scholar 

  53. Palm, G. On the representation and approximation of nonlinear systems. Part II: Discrete time. Biol. Cybern. 34:49–52; 1979.

    Article  Google Scholar 

  54. Palm, G.; Poggio, T. The Volterra representation and the Wiener expansion: Validity and pitfalls. SIAM J. Appl. Math. 33:195–216; 1977.

    Article  Google Scholar 

  55. Palm, G.; Poggio, T. Stochastic identification methods for nonlinear systems: an extension of the Wiener theory, SIAM J. Appl. Math. 34:524–534; 1978.

    Article  Google Scholar 

  56. Rugh, W.J. Nonlinear system theory: The Volterra/Wiener approach. Johns Hopkins Univ Press, Baltimore; 1981.

    Google Scholar 

  57. Sakai, H.M.; Naka, K-I. Signal transmission in the catfish retina. IV transmission to ganglion cells. J. Neurophysiol. 58:1307–1328; 1987.

    CAS  PubMed  Google Scholar 

  58. Sakai, H.M.; Naka, K-I. Signal transmission in the catfish retina. V. Sensitivity and circuit. J. Neurophysiol. 58:1329–1350; 1987.

    CAS  PubMed  Google Scholar 

  59. Sakai, H.M.; Naka, K-I. Dissection of the neuron network in the catfish inner retina. I. Transmission to ganglion cells. J. Neurophysiol. 60:1549–1567; 1988.

    CAS  PubMed  Google Scholar 

  60. Sakai, H.M.; Naka, K-I. Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells. J. Neurophysiol. 60:1568–1583; 1988.

    CAS  PubMed  Google Scholar 

  61. Sakai, H.M.; Naka, K-I. Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells. J. Neurophysiol. 63:105–119; 1990.

    CAS  PubMed  Google Scholar 

  62. Sakai, H.M.; Naka, K-I. Dissection of the neuron network in the catfish inner retina. V. Interactions between NA and NB amacrine cells. J. Neurophysiol. 63:120–130; 1990.

    CAS  PubMed  Google Scholar 

  63. Sakai, H.M.; Naka, K-I.; Korenberg, M.J. White noise analysis in visual neuroscience. Vis. Neurosci. 1:287–296; 1988.

    CAS  PubMed  Google Scholar 

  64. Sakuranaga, M.; Ando, Y-J.; Naka, K-I. Dynamics of ganglion cell response in the catfish and frog retinas. J. Gen. Physiol. 90:229–259; 1987.

    Article  CAS  PubMed  Google Scholar 

  65. Sakuranaga, M.; Sato, S.; Hida, E.; Naka, K-I. Nonlinear analysis: Mathematical theory and biological applications. CRC Crit. Rev. Biomed. Eng. 14:127–184; 1986.

    CAS  Google Scholar 

  66. Sandberg, A.; Stark, L. Wiener G-function analysis as an approach to nonlinear characteristics of human pupil light reflex. Brain Res. 11:194–211; 1968.

    Article  CAS  PubMed  Google Scholar 

  67. Schetzen, M. Determination of optimum nonlinear systems for generalized error criteria based on the use of gate functions. IEEE Trans. Inform. Theory. 11:117–125; 1965.

    Article  Google Scholar 

  68. Schetzen, M. A theory of nonlinear system identification. Int. J. Control. 20:557–592; 1974.

    Google Scholar 

  69. Schetzen, M. The Volterra and Wiener theories of nonlinear systems. New York: Wiley; 1980.

    Google Scholar 

  70. Schetzen, M. Nonlinear system modeling based on the Wiener theory, Proc. IEEE. 69:1557–1573; 1981.

    Google Scholar 

  71. Stark, L.W. The pupillary control system: its nonlinear adaptive and stochastic engineering design characteristics. Automatica. 5:655–676; 1969.

    Article  Google Scholar 

  72. Stark, L.W. The pupil as a paradigm for neurological control systems. IEEE Trans. Biomed. Eng. 31:919–924; 1984.

    CAS  PubMed  Google Scholar 

  73. Strang, G. Linear algebra and its applications. (2nd Ed.) New York: Academic Press; 1980.

    Google Scholar 

  74. Sutter, E. A practical nonstochastic approach to nonlinear time-domain analysis. In: Marmarelis, V.Z., ed. Advanced methods of physiological system modeling. Los Angeles; USC Biomedical Simulations Resource, vol. 1. 1987:pp.303–315.

    Google Scholar 

  75. Varlaki, P.; Terdik, G.; Lototsky, V.A. Tests for linearity and bilinearity of dynamic systems. IFAC Symp. Ident. Sys. Param. Est. 1:427–432; 1985.

    Google Scholar 

  76. Victor, J.D. The fractal dimension of a test signal: implications for system identification procedures. Biol. Cybern. 57:421–426; 1987.

    Article  CAS  PubMed  Google Scholar 

  77. Victor, J.D.; Johannesma, P. Maximum-entropy approximations of stochastic nonlinear transducers: An extension of the Wiener theory. Biol. Cybern. 54:289–300; 1986.

    Article  CAS  PubMed  Google Scholar 

  78. Victor, J.D.; Knight, B. Nonlinear analysis with an arbitrary stimulus emsemble. Quart. Appl. Math. 37:113–136; 1979.

    Google Scholar 

  79. Victor, J.D.; Shapley, R. The nonlinear pathway of Y ganglion cells in the cat retina. J. Gen. Physiol. 74:671–687; 1979.

    CAS  PubMed  Google Scholar 

  80. Volterra, V. Sur les fonctions qui dependent d'autres fonction. Comptes Rendus Ac. des Sciences. 142:691–695; 1906.

    Google Scholar 

  81. Volterra, V. Theory of functionals and of integral and integro-differential equations. New York: Dover; 1959.

    Google Scholar 

  82. Watanabe, A.; Stark, L. Kernel method for nonlinear analysis: Identification of a biological control system. Math. Biosci. 27:99–108; 1975.

    Article  Google Scholar 

  83. Wiener, N. Nonlinear problems in random theory. Massachusetts: MIT Press; 1958.

    Google Scholar 

  84. Yasui, S. Stochastic functional Fourier series, Volterra series, and nonlinear systems analysis. IEEE Trans. Automat. Contr. 24:230–242; 1979.

    Article  Google Scholar 

  85. Yasui, S. Wiener-like Fourier kernels for nonlinear system identification and synthesis (nonanalytic cascade, bilinear, and feedback cases). IEEE Trans. Automat. Contr. 27:677–685; 1982.

    Article  Google Scholar 

  86. Zadeh, L. On the representation of nonlinear operators. IRE Wescon Conv. Rec. 2:105–113; 1957.

    Google Scholar 

  87. Zohar, S. Fortran subroutines for the solution of Toeplitz setz of linear equations. IEEE Trans. Acoust. Speech. Sig. Proc. 27:656–658; 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenberg, M.J., Hunter, I.W. The identification of nonlinear biological systems: Wiener kernel approaches. Ann Biomed Eng 18, 629–654 (1990). https://doi.org/10.1007/BF02368452

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368452

Keywords

Navigation